Journal of Process Control 82 (2019) 44-57

Contents lists available at ScienceDirect

Journal of Process Control

journal homepage: www.elsevier.com/locate/jprocont

Accelerated multiple alarm flood sequence alignment for abnormality)

pattern mining

Shiqi Lai?, Fan Yang"™*, Tongwen Chen?, Liang Cao®

Check for
updates

4 Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G 2V4, Canada
b Beijing National Research Center for Information Science and Technology (BNRist), Department of Autemation, Tsinghua University, Beijing 100084, China

ARTICLE INFO ABSTRACT

Article history:

Received 27 March 2017

Received in revised form 7 May 2019
Accepted 5 June 2019

Available online 23 August 2019

Keywords:

Alarm flood analysis
Industrial alarm monitoring
Time-stamped sequences
Multiple sequence alignment
Smith-Waterman algorithm

Alarm floods can interfere with operators and may therefore cause or aggravate industrial accidents. A
novel algorithmis proposed for pattern mining in multiple alarm floods. Unlike traditional methods which
either cannot deal with multiple sequences with time stamps or suffer from high computational cost,
the computational complexity of this proposed algorithm is reduced significantly by introducing a gen-
eralized pairwise sequence alignment method and a progressive multiple sequence alignment approach.
Two types of alignment refinement methods are developed to improve the alignment accuracy. The
effectiveness of the proposed algorithm is tested using a dataset from a real chemical plant.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Background and motivation

As the scale of industrial plants grows, process monitoring
becomes indispensable for ensuring the safety and efficiency of
operation. An alarm is defined as an audible and/or visible means of
indication to the operator an equipment malfunction, process devi-
ation, or abnormal condition requiring a responses [1]. In a typical
modern control system, a Message Processor program is employed
to handle the alarms which are detected by the data acquisition
subsystem. An alarm message is a text message or digital message
generated by the alarm system and stored in the alarm log. To be
more specific, when a process value exceeds one of its predeter-
mined thresholds, an alarm message is generated. Alarms can be
easily configured on a Distributed Control Systems (DCS), which
reduces the cost of alarm design and configuration, but on the other
hand prolongs the life-cycle of alarm rationalization, targeted to
avoid poor alarm designs. One consequence of poor alarm designs is
anincrease in both the number and intensity of alarm floods. Alarm
floods can interfere with operators and may therefore cause or
aggravate industrial accidents because even an experienced oper-
ator can be overwhelmed by tens or hundreds of alarms raised in a
short period of time. Without enough time for analysis, an operator

* Corresponding author.
E-mail addresses: slai3@ualberta.ca (S. Lai), yangfan@tsinghua.edu.cn (F. Yang),
tchen@ualberta.ca (T. Chen), caoliang@mail.tsinghua.edu.cn (L. Cao).

https://doi.org/10.1016/j.jprocont.2019.06.004
0959-1524/© 2019 Elsevier Ltd. All rights reserved.

can only handle the abnormal event based on his/her experience
or even take no actions, likely leading to improper executions for
important abnormalities. As a result, based on operators’ normal
response time [2], both EEMUA, ISA and IEC standards [3,1,4] rec-
ommend to set the upper limit of alarms announced to an operator
to be 6 alarms/h, and the alarm rate threshold for alarm floods to
be 10 alarms/10 min per operator.

One way to reduce alarm floods is to study univariate alarms, as
pointed out in [5]: “an alarm flood reduction will almost certainly
require a rationalization exercise to challenge each and reduce
the number of configured alarms.” Usually a majority of univari-
ate alarms are chattering alarms, which can be removed efficiently
by applying delay timers or dead-bands. Techniques for designing
delay timers and dead-bands have been proposed in [6-8].

Another way to reduce alarm floods is to rationalize conse-
quential alarms. A alarm sequence pattern is usually generated
when there is an abnormality propagating through physical con-
nections or information paths in a process. This type of pattern
can be obtained by applying pattern mining algorithms. The dis-
covered pattern can be potentially used in the advanced methods
mentioned in the EEMUA standard [3], such as predictive alarming,
online alarm attribute modification, and online alarm suppression.
Using pattern alarm sequences, causality analysis, either based on
process data [9-11] or alarm data (event logs) [12], can also be
conducted to investigate the root cause.

The authors in [13] summarized and categorized the existing
studies on the alarm overloading problem and formulated nine
fundamental research problems to be solved. In this paper, we
propose an accelerated multiple sequence alignment algorithm

S. Lai et al. / Journal of Process Control 82 (2019) 44-57 45

for pattern mining in multiple alarm floods, which potentially
can be used in solving the 5th and 6th listed problems, namely,
“whether there exists any nuisance alarms in the historical data,
worthy of redesigning alarm generation mechanisms” and “how
to design mechanisms to generate predictive alarms in order to
predict upcoming critical abnormal events.”

1.2. Alarm flood analysis

To give further explanation of our contribution in solving the 5th
and 6th listed problems, we need to have a detailed survey onalarm
flood analysis, which contains univariate alarm analysis, offline pat-
tern mining of alarm floods, online alarm flood pattern matching,
and causality analysis. Usually, a large proportion of an alarm flood
are nuisance alarms, of which chattering alarms form an impor-
tant part. Some methods, such as delay-timers [14], have been used
to reduce such chattering alarms. However, these methods cannot
totally suppress nuisance alarms during alarm floods, the major-
ity of remaining alarms are consequential alarms, which can be
caused by three reasons: (1) process state changes such as start-
up and shutdown; (2) bad alarm configurations such as redundant
measurements on a single process; and (3) causal relationships
among measured variables. In this case, alarm flood analysis is use-
ful to reveal connections of alarm messages and discover possible
patterns in alarm flood sequences.

Fig. 1 shows the procedures of alarm flood analysis. The purpose
of the offline part is to set up a pattern database for offline analysis
and the use of online pattern matching. During the offline part,
data preprocessing is carried out first to remove chattering alarms
before the extraction of alarm floods. Usually an off-delay timer is
used since it will not introduce detection delays when alarms are
raised. After preprocessing, an alarm rate threshold recommended
by ISA standard is used to extract alarm floods. The periods during
which the alarm rate is higher than the threshold is extracted. The
extracted alarm flood sequences are then numbered and saved for
further pattern analysis.

In the next step, pattern mining algorithms can be applied to
automatically find a common pattern sequence for each of the clus-
ters and save the patterns into a database for offline and online
analysis. The pattern database can provide early prediction for an
incoming alarm flood by matching the online alarm sequence with
the patterns in the database and obtain their similarity scores; then,
based on these scores, identify whether the online sequence is sim-
ilar to any of the patterns in the database and thereafter predict the
incoming alarm flood if a matching can be found [15]. In Fig. 1,
potential dynamic alarm management could be predictive alarm-
ing, online alarm attribute modification, and online alarm suppres-
sion. Causality analysis can also be applied once the patterns are
obtained to help recover the connections between the correspond-
ing tags in the pattern sequences and target the root cause.

1.3. Literature survey

This subsection contains a detailed literature survey on recent
work for sequence pattern mining and alarm flood pattern analysis.

Expert consultation and operator experience, by far, are still the
two approaches that have been used by most industrial compa-
nies when dealing with alarm floods. Expert consultation provides
good and accurate results; however, without doubts, its efficiency
is extremely low because of the involvement of a relatively large
amount of process knowledge. The approach based on the opera-
tor experience is usually faster, but its accuracy is not guaranteed
since it depends heavily on human judgments. Many pattern min-
ing algorithms have been developed to facilitate the study of alarm
floods.

Sequence pattern mining finds relevant parts in data examples
that appear repeatedly. A sequential pattern is a subsequence that

appears in a data set with frequency no less than a user-specified
threshold. For example, a subsequence, buying first a PC, then a
digital camera, and then a memory card, if it occurs frequently
in a shopping history database, is a sequential pattern. In [16],
an A priori-like algorithm was proposed to mine frequent pat-
terns by combining short sequences into longer ones. The authors
in [17] developed an algorithm to achieve patterns based on tree
structures. In [18], a vertical data format was utilized to generate
patterns, which did not require multiple scans over the database.
Algorithms based on projections were proposed in [19,20], which
had improvements on efficiency.

In the biology area, a very large number of pattern mining algo-
rithms have been proposed, most of which were modifications of
the pairwise sequence alignment methods [21-24]. Mainly two
types of modifications exist: the exhaustive search approach, as
in [25], which can guarantee global optimality, and the progressive
pairwise approach, such as [26] and [27], which can approximate
global optimal solutions. There is another type of algorithm based
on profile Hidden Markov Models (HMM), such as [28]. However,
in [29], the authors pointed out that: “a suitable HMM architec-
ture (the number of states, and how they are connected by state
transactions) must usually be designed manually.”

While a large amount of pattern mining algorithms exists in
the literature, most of them cannot be directly applied to find
patterns in alarm and event logs, due to the special format of
alarm data (every message comes with a time stamp). A variety
of pattern mining methods have been developed to analyze alarm
floods. The authors in [30] manually selected some alarm tags to
be the target tags at first, then applied the extracted patterns as
the basis for discovery of local relationships by identifying pri-
mary and consequential alarms. It is an event-based segmentation
strategy which data segmentation takes place in an event-based
context. In [31], the authors proposed a way to capture the rela-
tions of alarm messages in an alarm flood using first-order Markov
chains; then, the Euclidean distance between the transition prob-
ability matrices of two alarm floods was used to cluster the alarm
floods into groups. The authors in [32] developed a pattern growth
method to obtain patterns from alarm floods. However, the authors
pointed out “the proposed method was sensitive to disturbances
so that the pattern in sequences had to be exactly the same in
order to be recognized.” A dissimilarity-based method was pro-
posed in [33] to extract alarm sequence templates of given faults
and a Needleman-Wansch based algorithm was developed to iso-
late alarm sequences caused by certain known faultsin [34].In [35],
the authors proposed a method to re-order alarms during alarm
floods by assigning their priorities values and designed an interface
for a better operator support during flood scenarios.

Time information is also very important. On one hand, two
sequences with the same alarms and their ordering but different
time intervals in between the alarms can be caused by totally dif-
ferent faults. On the other hand, even the orders of some alarms in
two alarm sequences are different, they still can be alarm sequence
patterns. Because of this, methods have been proposed to take time
intervals between alarms into consideration when studying the
sequences.

For example, for two alarm sequences, take into account the
time information as shown below:

S; = < (4,00:01),(5,00 : 02),

(3,00:05),(2,00:06),(1,00:08),(3,00:19),(4, 00 : 20) >
Sy = < (3,00:00),(2,00:01),

(3,00:03),(2,00:04),(1,00:05),(3,00:09),(5,00 : 12) >

where the first one of each pair is the type of alarm and the second
one is the corresponding time stamp. By analyzing the time infor-

46 S. Lai et al. / Journal of Process Control 82 (2019) 44-57

l_ ___________________ -
I I
I I
Univariate alarm analysis | Extract alarm flood I
Offli : (Remove chattering alarms) sequences |
me
I I
I
| '
I I
| Pattern mining inside " | Pairwise similarity
' clusters calculation & clustering I
I
I
I
I I
Online matching using pattern database |
[g using p
Online | & I
I Dynamic alarm management |
I I
____________________ J

Fig. 1. Flowchart of alarm flood analysis.

mation, we may find that the bold part may not be alarm sequence
pattern due to the consideration of time stamps.
For two alarm sequences,

S3 = < (4,00:01),(5,00: 02),

(3,00:05),(1,00:06),(2,00:08),(3,00:13),(4, 00 : 20) >
Ss = < (3,00 :00),(2,00:01),

(3,00:05),(2,00:06),(1,00:08),(3,00:12),(5, 00 : 17) >

even the orders of some alarms in two alarm sequences are differ-
ent, they may be an alarm sequence pattern due to the fact that the
time interval of alarms occurrences is relatively close, the similarity
of these two alarm sequences may be high.

In [36], Generalized Sequential Patterns (GSP) was applied to
search for pattern alarm sequences in alarm floods; the algorithm
was able to blur the orders of alarms if they are raised in quick
succession and thus their order becomes less important. Algo-
rithms for pattern matching of two sequences were developed in
[37] and [38], based on the Smith-Waterman [22] and BLAST [23]
algorithms, respectively. In both papers, a weighted time distance
and vector were used to take the relative time between alarms
into account during the alignment. In [39], the authors proposed a
method for pattern mining in multiple alarm flood sequences using
a sequence alignment approach. However, the computational cost
of the algorithm does not scale well with the number and length of
sequences to be aligned.

1.4. Contribution and organization of the paper

In this work, we propose an accelerated multiple pattern min-
ing algorithm to find a suitable alignment of multiple alarm flood
sequences and obtain the pattern for a selected alarm flood clus-
ter. Unlike traditional methods which either cannot deal with
multiple sequences with time stamps or suffer from high com-
putational cost, the computational complexity of this proposed
algorithm is reduced significantly by introducing a generalized
pairwise sequence alignment method and a progressive multi-

ple sequence alignment approach. Based on this work, a pattern
database can be set up, which can provide early prediction for an
incoming alarm flood by matching the online alarm sequence with
the patterns in the database and predict an incoming alarm flood
if a matching can be found. The discovered patterns can help train
operators to handle corresponding series of alarm messages more
efficiently in order to prevent the overwhelming situation during
alarm floods. Some badly configured parts in alarm systems can be
revealed by the alarm flood patterns as well.

The rest of the paper is organized as follows. The problem
description and algorithm principle are given in section 2. In sec-
tion 3,anindustrial case study is provided to test both efficiency and
accuracy of the proposed algorithm and comparisons are made with
the exhaustive search approach in [39]. Detailed discussions on the
accuracy, computational complexity, algorithm convergence, and
some potential problems are carried out in section 4, followed by
the conclusions in section 5.

2. Algorithm principle

Our intended problem is to find the optimal alignment for a
cluster of alarm floods, so that based on this alignment an alarm
sequence pattern can be easily found.

2.1. Problem formulation

2.1.1. Alarm system and alarm message analysis

To offer a comprehensive explanation of alarms and alarm mes-
sages, we give the figure of the alarm system dataflow and the figure
of alarm message log from industry. Fig. 2 shows a typical schematic
of alarm system dataflow. The basic Process Control System (BPCS)
and Safety Instrumented System (SIS) are the two important com-
ponents that control the process and generate alarms based on
sensor measurements and predefined logics. In our work, we focus
on the alarms from safety instrumented systems based on the
standard IEC 62682 [4], the design and management of safety
instrumented systems are excluded from this standard. Please refer
to the standard IEC 61511 [40]. The panel and the Human Machine

S. Lai et al. / Journal of Process Control 82 (2019) 44-57 47

A

Alarm System

Advanced
> Alarm
Applications
'
N SIS
Alarm External
Sensors — >
Log Systems
..,.(D.—, o | | c C
BPCS
Final HMI Alarm
Control] > 5o
Elements Historian
1o e 3 ‘
Panel
Operator
—»
\./ e —
Process Control & Safety Systems Interface

Fig. 2. Alarm system dataflow [1].

Interface (HMI) allow the operator to intervene the control of the
process and view alarm logs.

In a DCS engaged plant, all monitored process variables and
alarms are collected onto the DCS server, where alarms are for-
matted and stored in alarm logs. Generally, in alarm logs, an alarm
message contains important information such as time stamp, tag
name, alarm type (identifier), priority, and acknowledgment state.
Analarm message may also include descriptive information such as
trip value, event, and description. Time stamp indicates the occur-
rence time of an alarm. Tag name is a unique code of a system
variable that is being monitored; it indicates the process vari-
able that has caused the alarm. Alarm type, or identifier, is the
alarm type related to the monitored variable (e.g., PVLO when
the variable is under its low limit). Priority shows the importance
of alarms. Acknowledgment state shows the status of an alarm,
namely, Return to Normal (RTN) or Alarm (ALM).

Fig. 3 gives an example of a segment of an alarm log. It is nec-
essary to point out that there are different kinds of alarm logs in
different process or situations. Therefore, we need to give spe-
cific explanations according to different situations. The definitions
in this example cannot be applied directly to other examples. In
the example, a PVLO alarm was raised for tag A at 2013-09-01
0:13 because its corresponding process variable went below the
trip value, which was set as 131. Then, this PVLO alarm for tag
A returned to normal at 2013-09-01 0:13 since the correspond-
ing process variable went back to its normal range. The priority
of this alarm is JOURNAL, which means the lowest priority. Nor-
mally, we connect the tag name and the tag identifier of an alarm
together with a dot in between while processing alarm messages,
e.g., A. PVLO, and replace ALM and RTN messages with 1 and 0 for
computing purposes.

2.1.2. Mathematical representation
Consider the following alarm message sequences:

Si= < (en,tin). (e, t12), ooy (€1my bim)y oos (€105 Lim) >,
S = < (ez,t21), (e, t22), ..., (€2n, t2n), .-y (€2N. L2N) >,
Sj = < (Ej‘[, tj])s (9_121 th), ey (e_fO: []D)v L (Ejo, t]()) >,

where ey, ep,.... €p € X (the set of alarm types) and tyy, tan,...,
tjo are the corresponding time stamps, respectively. 5, 53,..., 5y are
similar sequences detected by running pairwise sequence match-
ing algorithms such as [37]. The objective is to obtain the optimal
alignment of these sequences by adding gaps (represented by “[]”)
and deleting unrelated alarm messages, for example:

< (e16, t16): (€17, t17), (€18, t1g), [] , (19, t1g) >,

< (ez2, tz2), [1] , (€23, £23), (€24, £24) , (e25,1b5) >,

< [] 7(ej1a tj‘l)! (912, tjz)a [] El (ej?n tj?’) > .

2.2. Generalized pairwise sequence alignment

In this subsection, to explain the principles of generalized pair-
wise sequence alignment, three elements, including time distance
and weight vectors, generalized similarity score and generalized
dynamic programming procedure, will be introduced.

2.2.1. Time distance and weight vectors

Time stamps are important components of alarm messages; two
alarm messages with different time intervals could indicate totally
different problems in the process. In [37], it introduces the time
information into the Smith-Waterman algorithm to evaluate alarm
sequence alignment, which s called the modified Smith-Waterman
algorithm. The Smith-Waterman algorithm is proposed for the local
alignment of sequences in the field of biological informatics. Its
objective is to find a pair of segments, one from each of two long
sequences, such that there is no other pair of segments with greater
similarity (homology) [22].

The Smith-Waterman algorithm is a dynamic programming
algorithm, which contains two main steps. The first step is calculat-
ing the similarity score of two sequences and forming a similarity
matrix or table, the similarity score of the mismatch and gap-match
is negative as a penalty. The similarity score function can be defined
as follows:

1, ife,q- = €y;
(%, yi) = , (1)
I, ifey; # ey

48 S. Lai et al. / Journal of Process Control 82 (2019) 44-57

TIME TAG TRIP.VAL TYPE PRIO DSCR UNIT EVENT ACK
2013-09-01 0:13 A 131 PVLO JOURNAL GIB:RCYCLPMP ZD 130.989 ALM
CURRENT IND
2013-09-01 0:13 A 131 PVLO JOURNAL G1B:RCYCLPMP ZD 134.994 RTN
CURRENT IND
2013-09-01 0:15 B 3.9 PVLO JOURNAL D3: ABS AREA Q1 3.899 ALM
SUMP LEVEL
2013-09-01 0:15 C CMDDIS HIGH G-5B Abs Area Q1 CLOSED ALM
Sump Pmp
2013-09-01 0:15 D CMDDIS HIGH D1:ABS HOLD Qi TRANSIT ALM
TNK FLSH WTR
2013-09-01 0:15 A 131 PVLO JOURNAL G1B:RCYCLPMP ZD 130.989 ALM
CURRENT IND
2013-09-01 0:15 D 2 CMDDIS HIGH D1:ABS HOLD Ql OPENED RTN
TNK FLSH WTR
2013-09-01 0:16 A 131 PVLO JOURNAL GI1B:RCYCLPMP 2ZD 134.017 RTN
CURRENT IND
2013-09-01 0:16 C CMDDIS HIGH G-5B Abs Area Ql CLOSED RTN
Sump Pmp
2013-09-01 0:18 D 37.8 PVHI LOW V2: HYDR CON- Q1 RTN
TROL UNIT
2013-09-01 0:19 A 131 PVLO JOURNAL G1B:RCYCLPMP ZD 130.989 ALM
CURRENT IND
2013-09-01 0:20 A 131 PVLO JOURNAL GI1B:RCYCLPMP ZD 136.02 RTN
CURRENT IND
2013-09-01 0:22 A 131 PVLO JOURNAL G1B:RCYCLPMP ZD 130.989 ALM
CURRENT IND
2013-09-01 0:22 A 131 PVLO JOURNAL GI1B:RCYCLPMP ZD 134.017 RTN
CURRENT IND
2013-09-01 0:25 B 3.9 PVLO JOURNAL D3: ABS AREA Q1 RTN
SUMP LEVEL
2013-09-01 0:26 F 1.341 PVHI LOW G4: PRMRY UF- Q1 1.341 ALM
PLT481/D1
2013-09-01 0:26 F 1.341 PVHI LOW G4: PRMRY UF- Ql 1.341 ALM
PLT481/D1
2013-09-01 0:28 A 131 PVLO JOURNAL G1B:RCYCLPMP ZD 130.989 ALM
CURRENT IND
Fig. 3. An example of a segment of an Alarm log.
mismatch where w is the time weight vector, w is a time weighting function
with respect to the time distance. The time distance vector for an
sequence a alarm message (en, t;) is defined as:
sequence b = [l s s sy A] "
dk, = Itm — &,
where K is the total number of alarm messages in the sequence.
Thus, dX, gives the absolute time distance between (em,) and (ey,
t,) in the sequence. The time weight vector for (e, ty) is defined
{r.vS fr:—‘l tc‘—a lfc:—" ’a—] Ic
: as:
SEqUENCE ¢ s |] ey e e
| | | W= [wh,wi, ..., wk, ..., wK] -
5
S Vi MR T -
SEQUENCE 0 ' { e O] e e
{ t / ‘ { ! where f(-):R — R is the weighting function. A scaled Gaussian
"d-5 d-4 d=3 d-2 -1 d

Fig. 5. Modified Smith-Waterman algorithm.

The element of similarity matrix H can be recursively calculated by
the following equation:

Hi 1 j1 =max {Hu +s (Xi'a.Vj) sHijor +6, Hisg j+6, 0} (2)

where ¢ is uniform gap penalty. The second step is backward path
search based on similarity table. Go backward from this highest
value until meet an entry with value 0 (Figs. 4 and 5).

For the modified Smith-Waterman algorithm in [37], it intro-
duces the time information in sequences, which can be reflected
by the change of similarity score function:

s((eas ta) (eps 1)) = max [wg < Wil (1—)+ 4 (3)

function is selected in this paper:
flx)= e®i, (6)

where o is the standard deviation, controlling how much weight to
be put on the close-by alarm messages to blur their orders in the
alignment. The function also normalizes the real time distance to [0,
1]; alarge output indicates a short time distance. Correspondingly,
for modified Smith-Waterman algorithm, the element of similarity
matrix H can be recursively calculated by the following equation
with a uniform gap penalty 8:

Hy1jo1 =max {H;j+s (e t), (¢, 4)) > Hijr1 + 8, Hip1j+ 8,0}
(7

S. Lai et al. / Journal of Process Control 82 (2019) 44-57 49
TAl TA2 TAs TAp TAP

brd A A0l g8 By Gk Bx1 b pap ey TN

Al = :(eAlftAl) i (eAlltAl) ”(eAlftAl el (e.f;l'tAl) ol (eAIItAl) : =
171 1 411 1y 3 3 I I 1 I P Py

Az = :(eAz;tAz) L [] ::(eAzatAz) L | [] | | (eAz;tAz) : >
I 11 I I I | I I
I 1 1 I I l I |
l Nz 2 i T R Rt

Ay=< ! [] ::(eAM;fAM) N [] [o :(EAMJAM): ol (BAM:fAM)Jl >
B P . i S S e e =% oy !

‘Bl - |(eBl't.Bl) :: [] ::(eBl’tBl { X E (eBl’tBl) : : (eBI’t 1) : >
| 1 1 1 11 3 3 I | |
BZ = :(eszltsz) :: [] ”(eBz'th) E : (egzltgz) [: (egzltgz) :
I 1 i L b I
— . N :

= 2 2 o .0

By=<1 (1 Illepytgy) il (] [O N R (W 9 E e

| I I i b1 RO,
TBl TBZ T33 TBq TBQ

Fig. 6. An example of tuples in two alarm sequence alignments.

2.2.2. Worked example of time distance and weight vectors

Here is a demonstration of how the time distance and weight
vectors are calculated for analarm sequence. Consider the following
alarm sequence

((25:2); (1:3)5(3, 3:5),(1,:5); (4,.5:2));

where there are 5 alarm messages and 4 alarm types. The time
distance vector dy for message (2, 2) is calculated as: d} =2-2=
0,d3=3-2=1,8=35-2=15d{=5-2=3.andd} =52 —
2 = 3.2. The time distance matrix formed by vectors dq, d2, ds, da,
and ds is
0.0 1.0 1.5
1.0 0.0 0.5
[df,d}.d%, di,dij= |15 05 0.0
3.0 2.0 1.5
3.2 2.2 1.7

3.0
2.0
1.5
0.0
0.2

3.2
2.2
1.7
0.2
0.0

By applying the weighting function (with o =1) on the time distance
matrix, the time weight matrix is obtained:

1.00
0.61
0.32
0.01
0.01

0.61
1.00
0.88
0.14
0.09

0.32
0.88
1.00
0.32
0.24

0.01
0.14
0.32
1.00
0.98

0.01
0.09
0.24
0.98
1.00

T T T T T
[W ,WZ,W3,W4,W5] =

2.2.3. Generalized similarity score

In [37], the authors proposed a way to calculate the similarity
score between two alarm messages in two alarm sequences. Here
we generalize it to calculate the similarity score between two tuples
in two alarm sequence alignments. The definition of a tuple is illus-
trated by the example in Fig. 6. In the figure, there are two alarm
sequence alignments (A1, Az, ..., Ay and By, B, .. ., By); the tuples
(Ta1. Taz.-- -, Tap and Tgy, Tra,..., Tpg) are formed by alarm mes-
sages or gaps located at the same position of the corresponding
alignment. The lengths of the alignments are P and Q, respectively.
Notice the lengths of Ay, Ay, ..., Ay are always the same because

they are from the same alignment, while P and Q may not be the
same value.

The formula for calculating the similarity score S(Tap, Tpq)
between the tuples Ty, and Tgq is as follows:

M N
1—
o MN'u & ZZS([QZW fﬁ.-)s(fﬁj,tgj)), (8)

i=1 j=1

S(TApa TBq) =

where S((ef., th.), (egj, tgj)) is the similarity score between two

alarm messages and is obtained by
S((el to). (e t5)))

= max{ s((ef;,), (ef;, £5.)), (9)

s([egj, tgj), (ehi L))

where
s{lel: 1) (egj, fgj))
(Irl;llca’)i’{ng’p rek = egj], if the setisn’t empty
o g q) (10)
_ and (ij, tBj) isnotagap
L 0, otherwise,
5((931-, fgj), (sl
(113%3{‘/1/";1"? : egj =eh), if thesetisn'tempty
- and (eij,tgf) isnotagap (11)
\ 0, otherwise.

The negative parameter u in Eq. (8) is the mismatch penalty. The
similarity score S(Tgp, Tgq) between the two tuples Ty, and Tpq
is obtained by averaging all the pairwise similarity scores of the
alarms in the two tuples. The value of S(Tap, Tgq) is always within
[, 1]; a larger value means a stronger similarity. The similarity
score S((eh, th.), (egj, tgj)) between two alarm messages (el t}.)

and (egj,tgj) is achieved by selecting the larger value between

50 S. Lai et al. / Journal of Process Control 82 (2019) 44-57

TAI TAZ TAS TA4 TA5
4 =< [Z’,")“f(i&"?(s’i‘sj”; [(15) 11(4,52)] >
| |
4, =<i(222) (1 225)l (3,24) | | (1,25) 11 (4,26)] >
B, = <i(212) |(513) || 3.14)] { (1,14.5)1 (4,15)! >
I | I
B, = .(z 52.5)1 (1, 53) 1(3,54. 5) C [(488 >
TB] TBz TBJ TB/J TBS

Fig. 7. A numerical example for the calculation of the generalized similarity scores.

sllez), (eq tq)) and s((egj tq) (eh.. th)), as the commutative

law does not hold. When both (eﬁr, th.)and (egj, tgj) are gaps, their
score will be assigned as 0. Note that the pairwise similarity score
formulain [37] is a special case of the generalized similarity score
calculation proposed in this paper; when the two alignments are
reduced to two alarm sequences (e.g., M=N=1), the two formulae

will give exactly the same output.

2.2.4. Worked example of generalized similarity score

Consider the example of two alarm sequence alignments in
Fig. 7, where M=N=2 and the lengths of the two sequence align-
ments are both 5. The time weight matrices of A1, Ay, By, and By are
obtained as Wy, , Wy,, Wpg,, and Wp,, given o =1. The fourth row
and column of Wjg, are empty since the fourth element in B; is a
gap. Let p=—1, the similarity score for the pair of tuples T44 and
Tgy is calculated as

S(Ta4, Tpa) = ZZS((ehs th): (€4, 1)) = —0.12,
i=1 j=1

where

S((ears tay): (€, tgy)) = max(w; 4, wp 4} =0.88,

S((€4y, ta)s (€1, tg1)) = Max(Wy, 4, W5 4} = 0.88,

S((ej1 ’ t:1)v (Efgg, tgz)) =max{0,0}=0
and
S((ejz’ t:z 0 (eﬁz, tgz)) =max{0, 0} =

Intuitively, this negative similarity score also makes sense since

there is a gap in tuple Tp4 and the type of the two alarm messages

in tuple Ty4 is “1” while the type of the alarm message in tuple Tgq
is “3”. The reason why this similarity score is —0.12 instead of the

minimum value —1 is because there exists an alarm message (1, 14)

in tuple Tp3 that was raised slightly ahead of (3, 14.5) and its alarm

type matches the alarm messages in tuple Tyg4.

WA] :[w;],l’w;1,2’w:frl],?r’w;l.ll’w;]ﬁ]
1.00 0.61 0.32 0.01 0.01
0.61 1.00 0.88 0.14 0.09

=032 0.88 1.00 0.32 0.24
0.01 0.14 0.32 1.00 0.98

[0.01 0.09 0.24 0.98 l.OOJ

A Tu T Tz Tar

A 4

A 4

Fig. 8. Anillustrative example on how to obtain the generalized dynamic program-
ming matrix.

Wy, = [sz.l’wzz,z’wﬂz 3’w.‘£2,4’w;2,5]
[1.00 0.88 0.14 0.01 O]
0.88 1.00 0.32 0.04 0

— | 0.14 0.32 1.00 0.61 0.14
0.01 0.04 0.61 1.00 O0.61

0 0 0.14 0.61 1.00

Wp :[WE]_.Png,szgl,aﬂwgl,szg],s]
[1.00 0.61 0.14 0.04 0.017
0.61 1.00 0.61 0.32 0.14
= 10.14 0.61 1.00 0.88 0.61
0.04 0.32 0.88 1.00 0.88
_0.01 0.14 0.61 0.88 1.00

W, :[Wz?-zl’ By,2° W, 3“’5243 525]
[1.00 0.88 0.14 [] 0.01
0.88 1.00 0.32 [] 0.04
— 014 032 1.00 [] 0.61

[1 (1 [l (11
0.01 0.04 061 [] 1.00J

2.2.5. Generalized dynamic programming procedure

Similarly, the dynamic programming procedure proposed in
[37] for aligning two alarm sequences is generalized to aligning
two alarm sequence alignments.

Fig. 8 illustrates the way to achieve the generalized dynamic
programming matrix from the tuples’ point of view. To begin with,
the first row and column of the matrix are filled in with zeros. Then,
iteratively fill the rest of cells of the matrix with Hyy obtained from
Hyi1y1 = mdx

I(Ty x> Tg.i-y), O
1:!‘5%.1:{;’5)4((A,iix BJ._V))
Hxy +S(Tax+1, Tpy+1), (12)

Hyyi1+6, Hyi1y+46, 0),

= max{

S. Lai et al. / Journal of Process Control 82 (2019) 44-57 51

primitive alignment

d
06
0.55¢
®
(5]
5 c
g 05} b
0.45 -
04 a
|
1 2 3 4 5 6

Alarm Sequences

Fig.9. Anexample of dendrogram and the progressive multiple sequence alignment
procedure based on it.

where the negative parameter § is the gap penalty, and the simi-
larity index I(T4 j.x. Tp:y) is the alignment score of the segment pair
(TA.i:xr TBJ:y)‘

Once the whole dynamic programming matrix is achieved, the
optimal alignment of the two alignments can be generated based on
back-tracking. During back-tracking, the position of the maximum
value in the dynamic programming matrix is located at first. Then,
the algorithm tracks backwards to obtain the path along which the
maximum score is generated. At last, one forward pass through the
back tracking path gives the optimal alignment.

The difference between the generalized and the standard
dynamic programming procedures is that the former one treats
the “sequence” from a “tuple” point of view, which allows the
“sequence” to be either an alarm sequence or an alignment of mul-
tiple alarm sequences. Thus, the standard dynamic programming
procedure can be seen as a special case of the generalized one.

2.3. Progressive multiple sequence alignment method

The computational cost of the exhaustive search approach in
[39] grows exponentially with the number of sequences and their
lengths, making the algorithm easily overwhelmed by real data. To
improve the efficiency, we propose a progressive multiple sequence
alignment method based on the generalized dynamic programming
to find the optimal sequence alignment.

In the first step of our algorithm, the modified Smith-Waterman
is applied to calculate all the pairwise similarity scores between
the alarm sequences. Then, a dendrogram is built based on these
pairwise similarity scores using UPGMA (Unweighed Pair Group
Method with Arithmetic Mean). Fig. 9 shows an example of a den-
drogram, in which there are 6 alarm sequences and the height of a
link indicates the dissimilarity between two connected sequences.

Next, guided by the dendrogram, the primitive alignment of the
sequences is obtained by progressively aligning all the sequences,
from the most similar pair to the most dissimilar ones. In the exam-
ple shown in Fig. 9, the link connecting sequences 1 and 2 is the
lowest one, indicating them to be the most similar sequence pair.
Thus, these two sequences are aligned first and thus their align-
ment a is obtained. Similarly, sequences 4 and 5 are aligned and
thus alignment b is obtained. Then, since there is a connection
between sequence 3 and alignment b, the generalized pairwise
sequence alignment method is conducted to get alignment ¢ by
aligning sequence 3 and alignment b. By iteratively aligning the
sequences based on the dendrogram, the primitive alignment of all
the 6 alarm sequences can be achieved.

Compared to the exhaustive search approach in [39], which
conducts exhaustive search to find the exact optimal alignment,

the proposed method approximates the optimal alignment by pro-
gressively aligning all the sequences. This new approach greatly
improves the efficiency of the algorithm; as the cost, however, the
global optimum is no longer guaranteed.

2.4. Iterative alignment refinement methods

Two iterative alignment refinement methods are developed to
improve the accuracy of the primitive alignment generated by the
progressive sequence alignment approach.

2.4.1. Leave-one-out alignment refinement

The first one is Leave-one-out alignment refinement. Similar to
the leave-one-out cross validation, which leaves one dataset out
for testing and use the rest for training, during each iteration of the
leave-one-out alignment refinement, one sequence in the align-
ment is replaced by its original sequence and then be re-aligned
with the rest of sequences in the alignment (if any, common gaps
in the rest of the alignment sequences should be removed) using
the generalized pairwise sequence alignment method. After re-
aligned, the new alignment score is compared with the old one
before the current refinement iteration, and the alignment with the
higher score will be kept for the next iteration. Iteratively repeat
this procedure until the alignment score converges.

Fig. 10a shows an illustration of one iteration of the leave-
one-out refinement; respectively, the solid lines and “[]" represent
alarm sequences and gaps in the alignments. In the example, align-
ment 1 is left out and replaced by its original alarm sequence, as
indicated by the red bold line. Then the common gaps in the rest
of the alignments (2, 3, 4, and 5) are removed before they are re-
aligned with the original alarm sequence 1.

Note the convergence is guaranteed by the leave-one-out refine-
ment method. However, it is not guaranteed to converge to the
global optimum. Details of convergence will be provided in the
discussion section.

2.4.2. Random-division alignment refinement

The second is Random-division alignment refinement. Com-
pared to the leave-one-out approach, it has a relatively lower
convergence speed, but in some cases, it could still improve the
alignment result even when the leave-one-out alignment con-
verges. The detailed reason will be provided in the discussion
section.

As illustrated in Fig. 10b, the primitive alignment is randomly
divided into two groups (1, 2, 4, and 3, 5). Then, if any, the common
gaps in each of the two groups of sequences should be removed,
as shown in the example. Next, the two groups of sequences
are re-aligned using the proposed generalized pairwise sequence
alignment method. After re-aligned, the new alignment score is
compared with the old one before the current refinement itera-
tion, and the alignment with the higher score will be kept for the
nextiteration. Iteratively repeat this procedure until the upper limit
number of iterations is reached.

Similar to the leave-one-out refinement, the convergence is
guaranteed for the random-division approach when no upper limit
iteration number is set. However, the convergence is hard to be
identified without knowing the optimal alignment score before-
hand, also the convergence value is not guaranteed to be global
optimum. Moreover, since no sequence in the alignment will be
replaced by its original sequence during the refinement, the primi-
tive alignment becomes much more critical; and the deleted alarm
messages in the sequence of an alignment will never be brought
back.

52 S. Lai et al. / Journal of Process Control 82 (2019) 44-57

| ll] [ll 1l
| Divide sequence l| 1
AR Ll 1 with others and L]
| replace it with its |
0101 11 1] Original sequence 7 LA o)
12345 Original 2345
sequence |
Remove
* * common
gaps
1
. N
= [
.New - Re e.lhgn
alignment with
Original TR

sequence |

(a) Leave-one-out refinement

I [] .
L [] (]
IR IS Randomly D
| divide
(100 0 — ks
[|l | [ll |
L 2d=%5 124 35
Remove
* * common
gaps
! i
(1 (]
New - Re-&'l]ign
alignment V1 wit
[|1 |
124 35

(b) Random-division refinement

Fig. 10. Illustrations of the two types of alignment refinement methods.

3. Industrial case study

The proposed algorithm has been tested on an industrial dataset
from Suncor Energy Inc. The dataset comes from a plant that is
already in production but need rationalization to deal with chat-
tering alarms and alarm floods. Off-delay timers of 300 seconds

Table 1

Statistics of the dataset
Description Number
Total time period 336 days
Total number of tags 1502
Total number of alarms 109,393
Average alarm rate 14/h
Highest peak alarm rate 334/10 min
Number of alarm floods 359
Average length of alarm floods 39

Table 2

Information of the alarm sequences in each selected cluster
Cluster A B c D
Number of alarm floods 19 12 9 17
Average sequence length 26.6 14.6 31.6 201
Longest sequence length 46 23 64 36
Shortest sequence length 15 10 14 10
Pattern length 14 4 11 2

have been applied as a preprocessing step at the beginning of the
analysis to remove chattering alarms. The reason for using off-
delay rather than on-delay is because it does not introduce any
delay when raising an alarm. Alarm floods were extracted based on
the ISA standard: 10 alarms per 10 minutes per operator. General
descriptions of the dataset are shown in Table 1.

The flowchart of the algorithm is shown in Fig. 11. The param-
eters were chosen as: 0=0.2, u=—1, §=—1, and the upper limit
iteration number for random-division refinement is set as 50. All
the tests were carried outon a 64 bit Windows PC with Intel i7-4770
3.40GHz CPU and 24.0 GB memory.

Pairwise similarity scores were calculated using the method
in [37] and the UPGMA clustering was conducted based on the
obtained similarity scores thereafter. Similar to the proposed
approach, the method in [37] finds the similarity score between a
pair of sequences by searching for their best alignment. It is able to
find the exact optimal alignment; however, it can only be applied
on a pair of sequences rather than multiple ones. The clustering
result is shown in Fig. 12, where each pixel represents the sim-
ilarity score between two corresponding alarm flood sequences;
darker color means a higher similarity. Four groups of alarm floods
were selected to be the test dataset, denoted as clusters A, B, C, and
D. The reason for choosing them as the test datasets was because
they each contains sufficient number of alarm floods for testing, and
a pattern of alarm sequence exists in each of the clusters. Detailed
information about the four selected clusters can be found in Table 2.

Both accuracy and efficiency tests have been conducted to com-
pare the proposed algorithm with the exhaustive search approach
in [39]. Same parameters were set for both algorithms.

3.1. Accuracy tests

For each of the four clusters, 3 sequences were randomly
selected, and the two algorithms were applied respectively to find
the best alignment. Since the exhaustive search approach guaran-
tees the global optimum, the accuracy of the proposed algorithm
can be evaluated by the alignment score difference between the two
algorithms. Repeat the whole procedure for 50 times and obtain
the average alignment score difference for each cluster; the result
is shown by the green line in Fig. 13.

From the left to the right, the four points on the green line
indicates the average alignment score difference between the two
algorithms in clusters B, D, A, and C respectively (in the ascendant
order of the average sequence length in each cluster). Similarly, the
average alignment score difference between the two algorithms
was obtained when 4 and 5 sequences were randomly selected

S. Lai et al. / Journal of Process Control 82 (2019) 44-57 53

Dendrogram build-up

}

Align the most similar
sequence pair using the
generalized pairwise alignment
method

N

e
~Reached the top of the
dendrogram?

Progressive multiple
sequence alignment

Iteratively refine the
alignment using the leave-
one-out refinement method

Leave-one-out
refinement

No

Converged?

Iteratively refine the
alignment using the random-
division refinement method

No
e

eached the up limi
iteration number?

Yes

< Output the alignment)

Fig. 11. Flowchart of the proposed algorithm,

Random-division
refinement

from each of the four clusters, presented by the red and blue lines
respectively.

A very noticeable spike can be found in all the three lines
in Fig. 13, showing that the average alignment score difference
between the two algorithms was large for the tests in cluster D.
The reason for this is because the pattern length in cluster D was
too short (only 2). Thus, the alignment can be easily influenced
by the similar terms among the sequences that are not related to
the pattern. Also, since the pattern length is too short, the per-
centage of alignment score difference caused by a small defect in
the alignment would be amplified. In addition to the big spike
caused by cluster D, the accuracy of the proposed algorithm is
high, with no more than 10% difference compared to the exhaustive
search approach. Fig. 13 also shows that there is no evident rela-
tion between the accuracy of the proposed algorithm and number
of sequences to be aligned or the average sequence length.

Cluster using Agglomerative Hierarchical Cluster Tree

0.9

0.8

0.7

06

05

0.4

Alarm flood No. 1-359

03

02

01

Alarm flood No. 1-359

Fig.12. Clustering result of the extracted alarm floods and the four selected clusters.

N
o

~+-3 sequences to align
-4 4 sequences to align
—=—5 sequences to align

w
5]

w
o

N
(&)

=
w»

e
o

Percentage of alignment score difference (%)
n
(62 o

14 16 18 20 22 24 26 28 30 32 34
Average sequence length

Fig. 13. Percentage of alignment score difference between the proposed algorithm
and the exhaustive search approach.

3.2. Efficiency tests

Execution times of both algorithms during the accuracy tests
were recorded to compare their efficiency.

3.2.1. Efficiency comparison of two algorithms

Fig. 14 shows the efficiency of the two algorithms as the num-
ber of sequences to be aligned grows. The execution times of both
algorithms increases when the number of sequences grows; how-
ever, the growth rate of the proposed algorithm is much smaller
than that of the exhaustive search approach. When the number of
sequences reached 5, the proposed algorithm was almost 10,000
times faster than the exhaustive search approach.

Fig. 15 indicates there is a positive relation between the com-
putational cost of the exhaustive search approach and the average
sequence length, but this trend is not evident for the proposed algo-
rithm. The reason is because the pattern length, as numbered on
the figure, influences the execution time of the proposed algorithm
as well. Detailed explanation will be provided in the discussion
section.

3.2.2. Execution time analysis of the proposed algorithm
More efficiency tests were conducted to cover the testing region
that had not been touched by the accuracy tests. Since the exhaus-

54 S. Lai et al. / Journal of Process Control 82 (2019) 44-57

4
10 I
=& Average execution time of exhaustive search method
—4—Average execution time of new method
10%- | —*—Longest execution time of exhaustive search method

—#—Longest execution time of new method

O
g 10%
-
S
EPR
g0
b [
w
10%
F —
10-1.—_———//
3 4 5

Number of sequences to be aligned

Fig. 14. Efficiency comparison of the two algorithms when the number of sequences
increases.

+ |—&—Average execution time of the exhaustive search method
I |—*—Average execulion time of new method
—e—Longest execution time of the exhaustive search method
102 - |~ Longest execution time of new method

0
E 10} With a pattern
= t length of 11
§
B [‘With a pattern
2100 ‘ With a pattern length of 14
| With a pattern length of 2
length of 4
102 ! :
14 16 18 20 22 24 26 28 30 32

Average sequence length

Fig. 15. Efficiency comparison of the two algorithms when the average sequence
length increases.

9 :
-4 -Average execution time
8 - |—=—Longest execution time A

7t

- o f=]

(]

Executiont time (s)

Number of sequences to be aligned

Fig. 16. Execution time of the proposed algorithm when the number of sequences
grows,

tive search approach could hardly finish in most of the tests, only
the result of the proposed algorithm is shown.

Fig. 16 shows the execution time of the proposed algorithm
when the number of sequences to be aligned increases. The tests
were conducted by randomly selecting sequences from cluster A
(average sequence length 26.6); 50 repeated tests were carried out
for each number of sequences. The result reveals a quadratic trend
in the computational cost as the number of sequences to be aligned

250
|- & -Average execution time,
—¢—Longest execution time |
200
0
£ 150
=
=
2
2100
X
w
50
S ---""""'-*
0 T - 1
0 50 100 150 200 250 300

Average sequence length

Fig. 17. Execution time of the proposed algorithm to align 10 sequences as the
average sequence length grows.

- & -Average executiont time
—e—Longest execution time -

= o

Execution time (s)
w

1 2 3 4 5 6 7 8 9 10
Upper limit iteration number for random-division refinement

Fig. 18. Execution time of the algorithm with respect to the upper limit iteration
number for the random-division refinement.

grows. Even when the sequence number exceeds 250, as shown
in Fig. 17, the execution time of the proposed algorithm was still
within 1 minute.

Fig. 17 reveals the relationship between execution time of the
algorithm and average sequence length. The tests were carried out
by applying the proposed algorithm to align 10 alarm sequences
randomly selected from cluster A. In order to increase the sequence
length in the each test, the sequences were extended by duplicat-
ing and connecting themselves with their duplicates. Each test was
repeated 50 times and both the average and the longest execution
time were recorded. The result shows the longest execution time
grows quite fast with the growth of average sequence length; how-
ever, the average execution time grows much slower and is always
less than 50 seconds. The reason is because the sequence length
in cluster A varies from 15 to 46 and thus the sequence growth
rates were quite different when the sequences were extended by
duplicating themselves.

Fig. 18 shows the influence of the upper limit of iteration num-
ber for the random-division refinement on the execution time of
the algorithm. The results were obtained by aligning 10 sequences
randomly selected from cluster A, with different upper limits of
iteration numbers for the random-division refinement in the algo-
rithm. Each test was repeated 50 times and both the average and
the longest execution times were recorded. The result shows a lin-
ear increasing trend of the execution time of the algorithm when
the upper limit increases, as is expected. The detailed reason will
be explained in the discussion section.

S. Lai et al. / Journal of Process Control 82 (2019) 44-57 55

6

8 -~ “Cluster A
S 5.5] = Cluster B
o —e—Cluster C
0 5[|-+-Cluster D
c
845
e
S 4
)
s}
@ 3.5
c
]
g A :
k5 o
:.5 25 1
1]
8 2
£
=15 =
""" ol Iy —— }
1 —— " mumamaliparsems =TT
3 4 5 6 7 8 9 10

Number of sequences to be aligned

Fig. 19. The number of refinement iterations needed before reaching the conver-
gence when the number of sequences to be aligned increases.

5 & £ &

Total alignment score

S
=

0 5 10 15 20 2 30 35
Times of refinements

Fig. 20. An example of convergence curves when the order of sequences to be left
out for the leave-one-out refinement method varies.

3.3. Convergence tests

3.3.1. Convergence analysis of the leave-one-out refinement

Since the convergence speed of the random-division refinement
is much slower than the leave-one-out refinement and can hardly
be identified, only the convergence speed of the leave-one-out
refinement was tested. Fig. 19 shows the refinement iteration num-
ber needed before the convergence was reached by leave-one-out
refinement when aligning different numbers of sequences in each
cluster. As the result shows, more iterations were needed when
the number of sequences to be aligned was large. However, there
is no clear relationship between the refinement iteration num-
ber needed for convergence and the average sequence length, as
the descending order of average sequence length in each cluster is
C>A>D>B.

When applying the leave-one-out refinement method, for each
iteration we always select the sequence by their orders in the prim-
itive alignment. However, will the order we select the sequences
to be left out make a difference in the final alignment given by the
leave-one-out refinement method? The answer is yes, as the result
in Fig. 20 shows, where 10 different orders were tried to improve
a certain primitive alignment using the leave-one-out refinement
method. The result shows the order we use to select the sequences
will influence not only the convergence value but also the speed for
the leave-one-out refinement method.

46

Alignment score
Y Ey ES S
N ' w s P A el
[3,] w ()] S w o w

e
N

0 10 20 30 40 50 60
Refinement times

(a)

46

42

Alignmetn score

0 10 20 30 40 50 60
Refinement times

(b)

Fig. 21. Examples of the optimums achieved by the two types of refinement meth-
ods: (a) when the random-division refinement method was better; (b) when the
leave-one-out refinement method was better.

3.3.2. Comparison of two refinement algorithms

The two refinement methods were also compared by evaluating
the amount of improvement they can make on a given primitive
alignment. Since for a certain primitive alignment, the leave-one-
out refinement always has the same convergence trail, while the
random-division method doesn’t, the final alignment score of the
leave-one-out refinement was compared with the results from 30
runs of the random-division refinement.

Two cases where the two methods achieved a higher alignment
score compared with each other are shown in Fig. 21. The red bold
lines represent the converging trails of the leave-one-out method,
while the blue lines show the trails of the random division method.
In case (a), the leave-one-out refinement was stuck in a local opti-
mum and outperformed by most of the runs of the random division
refinement. However, in case (b), the leave-one-out refinement
was better than all runs using the random-division refinement. The
reason for this was because the leave-one-out refinement method
could recover from the incorrectly deleted part for the primitive
alignment, but the random-division refinement method could not.
Thus, during the procedure of forming the primitive alignment, if a
part of the sequence that should appear in the optimal alignment
was deleted incorrectly because of the approximation, then we
should expect it to be recovered by the leave-one-out refinement
method rather than the random-division refinement.

4. Discussions
4.1. Accuracy discussion

Compared to the exhaustive search approach in [39], the pro-
posed algorithm does not guarantee the global optimum. However,

56 S. Lai et al. / Journal of Process Control 82 (2019) 44-57

as shown in the industrial case study section, the accuracy of the
proposed algorithm is acceptable (within 10% range) when the pat-
tern length is not too small (larger than 3). For the cases where the
pattern sequence is too short, the algorithm may not perform well
since the alignment can be easily influenced by the similar terms
among the sequences that are not related to the pattern, and the
improvement on the primitive alignment that could be made by
the two refinement methods will be very limited as well.

We need to point out that there is a trade-off between algo-
rithm'’s efficiency and accuracy. Our algorithm does not guarantee
to find the optimal solution like the method in [39] does. However,
based on our tests, the accuracy of the proposed algorithm is still
suitable for applications, averaging 5% difference when compared
to the results given by the method in [39]. The efficiency of the pro-
posed algorithm is higher than the method in [39] by several orders
of magnitude. Thus, given a large scale dataset, the proposed algo-
rithm is able to complete fast with usable results while the method
in [39] may stuck for hours or even days.

4.2. Computational complexity discussion

The computational complexity of the proposed algorithm is
composed of five parts: (1) calculation of time weight matrices
O(ZLL?), where N is the sequence number and L; is the sequence
length; (2) formation of the dendrogram ©(N?3); (3) generation of
the primitive alignment using progressive multiple sequence align-
ment method O Z}‘;]AﬂAﬂ), where Ajy and Aj; are the lengths of
the two sequences (can be either a sequence or an alignment) for
the generalized pairwise sequence alignment; (4) leave-one-out
refinement O(ZL]AklAkz)' where I is the number of iterations
before convergenceisreached,and Ay and A, are the lengths of the
two sequences (can be either a sequence or an alignment) for the
generalized pairwise sequence alignment; and (5) random-division
refinement O(Z?ﬂAﬂA[z), where I is the upper limit iteration
number, and A and Ag are the lengths of the two sequences (can
be either a sequence or an alignment) for the generalized pairwise
sequence alignment. Thus the whole computational complexity is

N N-1 I I
o ZL,Z +N2) AnAp+ ZAmAkz + ZAnArz
i=1 =1 k=1 =1

Based on the computational complexity analysis, the efficiency
of the proposed algorithm is determined by many factors, among
which the number of sequences, sequence length, and alignment
length are the three main elements. The highest order of sequence
or pattern length in the computational complexity is only quadratic
for the proposed algorithm. Notice the computational complexity
of the exhaustive search approach in [39] is

N N
o) L) = (] [,
k=1 k=1

which increases exponentially with the sequence number and
length. Thus, the proposed algorithm achieves a significant
improvement in efficiency, which has also been confirmed in the
industrial case study section.

4.3. Convergence discussion

The convergence can be guaranteed by both refinement meth-
ods. The proof is simple and does not require any mathematical
derivations. Since in every refinement iteration, the new alignment
score will be compared with the old one, and the alignment with

a higher score will be fed to the next iteration. Thus, the align-
ment score is monotonically increasing, while there must be an
upper bound for the alignment score of certain sequences. There-
fore, the convergence is guaranteed for both of the refinement
methods. The leave-one-out refinement method converges when
no more improvement can be made to the alignment for a full round
of iterations (every sequence has been left out once). However,
the convergence of the random-division refinement can hardly be
identified, as there does not exist a full round of iterations. Thus,
an upper limit number of iterations should be configured for the
random-division refinement method.

Convergence speeds of the two refinement methods are worthy
studying too. The leave-one-out refinement method usually, but
notalways, converges faster than the random-division method. The
reason is because for both of the refinement methods, there are two
main steps: separate the alignment into two bunches of sequences,
and re-align them. The leave-one-out refinement method has a cer-
tain order to separate the alignment, and only one sequence is
separated from the rest during one iteration. While the random-
division refinement method does not; thus there is a much bigger
pool of ways of separating the sequences in the alignment that the
random-division refinement method can select from.

Regarding the convergence value, both refinement methods
cannot guarantee the global optimum, and neither of them can
always achieve a better alignment score than the other. How-
ever, by combining them together we could have a better chance
to reach the global optimum, because each method improves the
alignment from a different perspective. The leave-one-out refine-
ment method can recover the part of the sequence that has been
incorrectly deleted during the generation of the primitive align-
ment because in each iteration, one sequence in the alignment is
replaced by its original sequence and re-aligned with the rest of the
sequences in the alignment. However, the random-division refine-
ment method cannot do so because no separated sequences will be
replaced by their original ones. Even though it cannot recover the
incorrectly deleted sequence part, it still has an advantage over the
leave-one-out refinement method — a much bigger pool of ways of
separating the sequences in the alignment to choose from, which
means more chances to improve the alignment by re-arranging the
gaps and matchings. Thus, by applying the leave-one-out refine-
ment followed by the random-division refinement method, we will
be able to first recover the incorrectly deleted sequence parts, and
then modify the ways of placing gaps and matchings in the existing
alignment to achieve a better alignment score. This is why in the
algorithm flowchart shown in Fig. 11, the leave-one-out refinement
is applied before the random-division refinement.

4.4. Parameter tuning discussion

Parameter tuning can be an obstacle for applying the proposed
algorithm. As mentioned in [37], the variance of the Gaussian func-
tion o, the gap and mismatch penalties § and p need to be tuned
to meet users' requirements. The variance of the Gaussian function
o controls the size of the time span within which the algorithm
blurs the occurrence orders between the alarm messages. When the
value of o goes to infinity, the algorithm totally ignores the orders of
alarms in the alignment and simply counts the alarm occurrences.
On the contrary, if & =0, the orders of alarms have to be exactly
the same in the two sequences in order to get a match. The gap
and mis-match penalties, o and u, determine the algorithm'’s tol-
erance to including gaps and mis-match terms in alignments. When
these two parameters get larger, the algorithm places more toler-
ance on the irrelevant alarms raised within a pattern sequence.
Besides the ones in [37], a new parameter is introduced in the
proposed algorithm: the upper limit number of iterations I, for
the random-division refinement. With a higher I, there will be a

S. Lai et al. / Journal of Process Control 82 (2019) 44-57 57

greater chance that the global optimum is reached, but at the cost
of higher computational cost.

During the generation of the primitive alignment, the sequences
are progressively aligned by the descending order of their pairwise
similarity. The reason for choosing this order is because once an
alignment is obtained, the gaps and the matchings between the
two sequences are fixed and will be propagated into the primitive
alignment. Thus, by aligning the most similar sequence pair first
and leaving the most divergent pair to the last would improve the
correctness of placing gaps and matchings in the alignment.

5. Conclusions

An accelerated multiple sequence alignment algorithm for pat-
tern mining in multiple alarm sequences has been proposed. A
progressive multiple sequence alignment mechanism has been
introduced to accelerate the generation of the primitive alignment.
Two types of refinement methods have been developed to improve
the primitive alignment. A dataset from a real chemical plant has
been used to test the effectiveness of the proposed algorithm and
compare it with the exhaustive search approach in [39]. The results
show the proposed algorithm has a significant improvement in
efficiency with a small accuracy cost. Based on this work, we can
provide early prediction for an incoming alarm flood by matching
an online alarm sequence with a pattern database and conduct-
ing similarity calculation. The discovered patterns are also helpful
in alarm management and causality analysis. In the future, tech-
niques to improve the accuracy and methods for parameter tuning
may be studied.

Acknowledgments

This work was supported by NSERC and the National Natural Sci-
ence Foundation of China (Grant No. 61433001 and 61873142). We
would like to thank Suncor for providing the data in the industrial
case study.

References

[1] ISA 18.2, Management of Alarm Systems for the Process Industries, The
International Society of Automation, Research Triangle Park, 2016.

[2] C.R.Dal Vernon,].L. Downs, D. Bayn, Human performance models for response
to alarm notifications in the process industries: an industrial case study, in:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
SAGE Publications, 2004, pp. 1189-1193,

[3] EEMUA, Alarm Systems — A Guide to Design, Management and Procurement,
Engineering Equipment and Materials Users Association, London, 2013.

[4] IEC 62682, Management of Alarm Systems for the Process Industries,
International Electrotechnical Commission, 2014.

[5] C.Timms, Hazards equal trips or alarms or both, Process Saf. Environ, Protect,
87(1)(2009) 3-13.

[6] S.R. Kondaveeti, I. Izadi, S.L. Shah, T. Chen, On the use of delay timers and
latches for efficient alarm design, in: 19th Mediterranean Conference on
Control & Automation, IEEE, 2011, pp. 970-975.

[7] S.R. Kondaveeti, 1. Izadi, S.L. Shah, D.S. Shook, R. Kadali, T. Chen, Quantification
of alarm chatter based on run length distributions, Chem. Eng. Res. Design 91
(12)(2013) 2550-2558.

[8] E. Naghoosi, I. Izadi, T. Chen, A study on the relation between alarm
deadbands and optimal alarm limits, in: Proceedings of 2011 American
Control Conference, IEEE, 2011, pp. 3627-3632.

[9] F.Yang, S. Shah, D. Xiao, Signed directed graph based modeling and its
validation from process knowledge and process data, Int. J. Appl. Math.
Comput, Sci, 22 (1) (2012) 41-53.

[10] P.Duan, F. Yang, S.I. Shah, T. Chen, Direct causality detection via the transfer
entropy approach, IEEE Trans. Control Syst. Technol. 21 (6) (2013) 2052-2066.

[11] P.Duan, F. Yang, S.L. Shah, T. Chen, Transfer zero-entropy and its application
for capturing cause and effect relationship between variables, IEEE Trans.
Control Syst. Technol. 23 (3) (2015) 855-867.

[12] F. Yang, S.L. Shah, D. Xiao, T. Chen, Improved correlation analysis and
visualization of industrial alarm data, ISA Trans. 51 (4)(2012) 499-506.

[13] J. Wang, F. Yang, T. Chen, S.L. Shah, An overview of industrial alarm systems:
main causes for alarm overloading, research status, and open problems, IEEE
Trans. Autom. Sci. Eng. 13 (2) (2016) 1045-1061.

[14] N. Ahmed Adnan, 1. Izadi, T. Chen, On expected detectiondelays for alarm
systems with deadbands and delay-timers,]. Process Control 21 (9) (2011)
1318-1331.

[15] S.Lai, F. Yang, T. Chen, Online pattern matching and prediction of incoming
alarm floods, J. Process Control 56 (2017) 69-78.

[16] R. Agrawal, R. Srikant, Mining sequential patterns, in: Proceedings of the 11th
International Conference on Data Engineering, [EEE, 1995, pp. 3-14.

[17]]. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation,
ACM SIGMOD Record, no. 2 (2000) 1-12,

[18] M. Zaki, Efficient enumeration of frequent sequences, in: Proceedings of the
seventh International Conference on Information and Knowledge
Management, ACM, 1998, pp. 68-75.

[19]]. Han,]. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M.-C. Hsu, Freespan: frequent
pattern-projected sequential pattern mining, in: Proceedings of the Sixth
International Conference on Knowledge Discovery and Data Mining, ACM,
2000, pp. 355-350.

[20]]. Pei,]. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, M.-C. Hsu,
PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern
growth, in: Proceedings of 29th International Conference on Data
Engineering, IEEE, 2001, pp. 215-224.

[21] S.B. Needleman, C.D. Wunsch, A general method applicable to the search for
similarities in the amino acid sequence of two proteins,]. Mol. Biol. 48 (3)
(1970) 443-453.

[22] T.F. Smith, M.S. Waterman, Identification of common molecular
subsequences, |. Mol. Biol. 147 (1) (1981) 195-197.

[23] S.F. Altschul, W. Gish, W. Miller, EW. Myers, DJ. Lipman, Basic local
alignment search tool,]. Mol. Biol. 215 (3) (1990) 403-410.

[24] W.R. Pearson, D]. Lipman, Improved tools for biological sequence
comparison, Proc. Natl. Acad. Sci. 85 (8) (1988) 2444-2448.

[25] M.S. Johnson, R.F. Doolittle, A method for the simultaneous alignment of three
or more amino acid sequences, J. Mol. Evol. 23 (3) (1986) 267-278.

[26] D.-F. Feng, RF. Doolittle, Progressive sequence alignment as a prerequisitetto
correct phylogenetic trees,]. Mol. Evol. 25 (4) (1987) 351-360.

[27]].D. Thompson, D.G. Higgins, TJ. Gibson, CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice, Nucleic
Acids Res. 22 (22) (1994) 4673-4680.

[28] S.R. Eddy, Multiple alignment using hidden Markov models, Proceedings of
International Conference on Intelligent Systems for Molecular Biology (1995)
114-120.

[29] S.R. Eddy, Profile hidden Markov models, Bioinformatics 14 (9) (1998)
755-763.

[30] S.Kordic, P. Lam, J. Xiao, H. Li, Analysis of alarm sequences in a chemical plant,
in: Lecture Notes in Computer Science, Springer, 2008, pp. 135-146.

[31] K. Ahmed, 1. Izadi, T. Chen, D. Joe, T. Burton, Similarity analysis of industrial
alarm flood data, IEEE Trans. Automat. Sci. Eng. 10 (2) (2013) 452-457.

[32]]. Folmer, B, Vogel-Heuser, Computing dependent industrial alarms for alarm
flood reduction, in: Proceedings of 9th International Multi-Conference on
Systems, Signals and Devices, IEEE, 2012, pp. 1-6.

[33] S. Charbonnier, N. Bouchair, P. Gayet, Fault template extraction to assist
operatoars during industrial alarm floods, Eng. Appl. Artif. Intel. 50 (2016)
32-44,

[34] S.Charbonnier, N, Bouchair, P, Gayet, A weighted dissimilarity index to isolate
faults during alarm floods, Control Eng. Pract. 45 (2015) 110-122.

[35] E.N. Satuf, E. Kaszkurewicz, R. Schirru, M.C_M.M. de Campos, Situation
awareness measurement of an ecological interface designed to operator
support during alarm floods, Int.]. Ind. Ergon. 53 (2016) 179-192,

[36] P. Cisar, E. Hostalkova, P. Stluka, Alarm rationalization support via correlation
analysis of alarm history, in: Proceedings of 19th International Congress of
Chemical and Process Engineering, Prague, Czech Republic, 2010, pp. 1-6.

[37] Y. Cheng, 1. Izadi, T. Chen, Pattern matching of alarm flood sequences by a
modified Smith-Waterman algorithm, Chem. Eng. Res. Des. 91 (6) (2013)
1085-1094.

[38] W. Hu, . Wang, T. Chen, A local alignment approach to similarity analysis of
industrial alarm flood sequences, Control Eng. Pract. 55 (2016) 13-25.

[39] S.Lai, T. Chen, A method for pattern mining in multiple alarm flood
sequences, Chem. Eng. Res. Des. 117 (2017) 831-839.

[40] IEC 61511, Functional Safety: Safety Instrumented Systems for the Process
Industry Sector, International Electrotechnical Commission, 2015.

