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Abstract Integrated states/faults observers for two-dimensional (2-D) linear systems, which
can simultaneously estimate system states and faults, are studied in this study. Multiple
channel faults, occurring in both measurement equation and state equation, are considered.
On the basis of the singular systemobservermethod and stability theory, asymptotically stable
observers and uniformly ultimately bounded observers are proposed for the 2-D systems. For
these two cases, constructive methods for observer design and parameter tuning are further
provided. Under different system conditions, the necessary and sufficient conditions for the
existence of integrated observers are derived and proved throughmatrix rank analysis. Finally,
two examples are given to demonstrate the performance of the proposed methods.

Keywords States/faults estimation · Singular system observer · Two-dimensional systems ·
Asymptotically stable observer · Uniformly ultimately bounded observer

1 Introduction

The exploration of two-dimensional (2-D) systems dates back to the 1970s (Roesser 1975)
and such systems have widespread applications in X-ray image enhancement (Kaczorek
1985), digital picture processing (Xie et al. 2002; Lin and Bruton 1989), thermal processes
(Marszalek 1984), and batch process analysis (Wang et al. 2018). Among these research
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areas, existence and design of observers in the context of 2-D systems have received extensive
attention in the past several decades.

Various 2-D observers and design methods have been proposed and analyzed, including
dead-beat observer (Bisiacco andValcher 2008;Wang and Shang 2015), Luenberger observer
(Bisiacco andValcher 2007), unknown input observer (Zhao et al. 2015; Bhattacharyya 1978;
Ntogramatzidis andCantoni 2012;Ntogramatzidis 2007), functional observer (Xu et al. 2012)
nonlinear observer (Zhao et al. 2017; Ghous and Xiang 2015; Liang et al. 2014a, b), and
singular system observer (Zou et al. 2007;Wang and Zou 2002).Moreover, among the existed
results on 2-D observer, some could be further detailed, like the fundamental studies on 2-D
observers with necessary and sufficient conditions for state reconstruction and the structure
of observers for 2-D systems based on polynomial matrix theory (Bisiacco 1986), and the
2-D nonlinear functional observer with existence condition in terms of matrix rank (Wang
et al. 2013).

To explore deeper, for multidimensional systems, a geometric fault detection and isolation
(FDI) approach for discrete-time multidimensional systems is proposed in Baniamerian et al.
(2016). Using basic invariant subspaces including unobservable, conditioned invariant and
unobservability subspaces for multidimensional models, necessary and sufficient conditions
for detectability and isolability of faults are provided. InMaleki et al. (2015), the basic results
are introduced in Theorems 2 and 3, which gives necessary conditions for fault detection and
sufficient conditions for the existence of an observer. In Ntogramatzidis and Cantoni (2012),
it leads to an LMI-based procedure for the synthesis of observers that asymptotically estimate
the local state of a standard Fornasini–Marchesini model.

Although creative studies have been conducted on the existence and design of observers
for multidimensional systems (including 2-D system as a special case), their results mostly
present sufficient or necessary conditions for the existence of observers (Baniamerian et al.
2016; Ntogramatzidis and Cantoni 2012;Wang et al. 2018) and rarely consider the estimation
of multiple channel faults (Wang et al. 2017). These results also did not consider the case
that there may be no asymptotically stable observers for multidimensional systems. For
2-D systems with multiple faults, no reported methods currently can estimate states and
multiple faults simultaneously. However, simultaneous estimation of system states and faults
are significant for fault diagnosis and fault compensation control. For example, if the observers
can detect, locate, and estimate the occurring multiple faults at the same time, then the fault
identification and signal compensation can be further performed rather than merely detected
and isolated faults. For one-dimensional (1-D) systems, the problem about fault observers
has attracted extensive attention and many results have been published (Dong et al. 2008;
Gao and Ding 2007; Wang et al. 2009; Lin and Liu 2006; Koenig 2005; Massoumnia 1986).
However, both problem description and system properties for the 2-D case are markedly
different from that for the 1-D case. In this case, we cannot just follow the same technique
line for 1-D problem to obtain the expected solution for a 2-D case.

Inspired by the singular systemmethod for 1-D case (Gao andWang 2006), we propose the
corresponding 2-D fault observers. In this study, the 2-D system described by the Fornasini
and Marchesini second (FM-II) model (Fornasini and Marchesini 1976, 1978) is considered.
Under different system conditions, we first provide the necessary and sufficient conditions
on whether or not the states and faults can be estimated.

The rest of the paper is organized as follows. In Sect. 2, some definitions and lemmas
are presented for the considered systems. Section 3 provides both existence conditions and
solution for the asymptotically stable observers and uniformly ultimately bounded observers.
In Sect. 4, the effectiveness of the proposed method is validated by simulation examples.
Section 5 summarizes the results of this study.
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2 Problem formulation and preliminary knowledge

The following FM-II model is used to describe a 2-D system with faults in both the measure-
ment equation and the state equation:

⎧
⎨

⎩

x(i + 1, j + 1) � A1x(i, j + 1) + A2x(i + 1, j) + B1u(i, j + 1) + B2u(i + 1, j)
+ M1 f (i, j + 1) + M2 f (i + 1, j)

y(i, j) � Cx(i, j) + fs(i, j)
(1)

and unknown boundary conditions satisfy:

sup ‖x(i, 0)‖ < ∞, i � 0, 1, . . . ; sup ‖x(0, j)‖ < ∞, j � 1, 2, . . . (2)

where x(i, j) ∈ Rn , y(i, j) ∈ Rp , and u(i, j) ∈ Rm are the system state vector, the output
measurement vector, and the input vector, respectively. f (i, j) ∈ Rq is the fault to represent
actuator fault or process fault. fs (i, j) ∈ Rp is the sensor fault. C,Ak,Bk,Mk(k � 1, 2) are
known system matrices with appropriate dimensions.

Referring to the fault model proposed for 1-D systems (Dong et al. 2014), the dynamic
characteristics of f (i, j) ∈ Rq in 2-D systems can be modelled as follows:

f (i + 1, j + 1) � Ad1 f (i, j + 1) + Ad2 f (i + 1, j) (3)

where Ad1, Ad2 are known matrices with appropriate dimensions.

Remark 1 In this study, although the dynamic characteristics of f (i, j) are described as
(3), the fault trajectory is unknown because of the undetermined initial value. In practice, by
analyzing historical faults datawith identification, or regressionmethods, or using established
fault dynamic characteristics of some common faults like motor fault, prior knowledge of
fault can be obtained and it will simplify our analysis. Please see Dong et al. (2014) and
references therein. For example, if we know the 2-D system fault is constant with unknown
initial value, the fault can be described as follows:

f (i + 1, j + 1) � 0.5 f (i, j + 1) + 0.5 f (i + 1, j)

The objective of this study is to design observers to estimate system states and faults in
both the measurement equation and the state equation simultaneously. Define x̄(i + 1, j +

1) �[ xT (i + 1, j + 1) f Ts (i + 1, j + 1)
]T

and consider the following observer:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z(i + 1, j + 1) � F1z(i, j + 1) + F2z(i + 1, j) + H1u(i, j + 1) + H2u(i + 1, j)
+ G1y(i, j + 1) + G2y(i + 1, j) + R1 f̂ (i, j + 1) + R2 f̂ (i + 1, j)

f̂ (i + 1, j + 1) � Ad1 f̂ (i, j + 1) + Ad2 f̂ (i + 1, j)
− Kd1C̄z(i, j + 1) − Kd2C̄z(i + 1, j)

ˆ̄x(i, j) � z(i, j) + T y(i, j)

(4)

and unknown boundary conditions satisfy:

sup ‖z(i, 0)‖ < ∞, i � 0, 1, . . . ; sup ‖z(0, j)‖ < ∞, j � 1, 2, . . . (5)

where, z(i, j) ∈ Rn+p and ˆ̄x(i, j) ∈ Rn+p are the state andoutput of the observer, respectively;
ˆ̄x(i, j) and f̂ (i, j) are the estimation of x̄(i, j) and f (i, j), respectively. F1, F2, H1, H2,

G1, G2, R1, R2, Kd1, Kd2 and T are the matrices to be determined.
Define e(i, j) � x̄(i, j) − ˆ̄x(i, j),ed (i, j) � f (i, j) − f̂ (i, j), and the following set:

Ū 2�{(z1, z2) ∈ C × C : |z1| ≤ 1, |z2| ≤ 1}. Some essential definitions and lemmas for the
2-D linear system can be applied:
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Definition 1 (Bose 1982) Assume that F(z1, z2) is the Z transformation of f (i, j), then the
2-D Z transformation formula is:

F(z1, z2) � Z[ f (i, j)] �
∞∑

i�0

∞∑

j�0

f (i, j)zi1z
j
2 (6)

Definition 2 Observer (4) is an asymptotic observer for system (1), if lim
i, j→∞ e(i, j) � 0 and

lim
i, j→∞ ed (i, j) � 0 hold for any system boundary conditions satisfying (2), any observer

boundary conditions satisfying (5), and any input sequence u(i, j).

Definition 3 Observer (4) is a uniformly ultimately bounded observer for system (1), if
there exist ζ > 0, ζd > 0, I > 0, J > 0 such that ‖e(i, j)‖ ≤ ζ and ‖ed (i, j)‖ ≤ ζd
(∀i ≥ I,∀ j ≥ J ) holds for any system boundary conditions satisfying (2), any observer
boundary conditions satisfying (5), any input sequence u(i, j).

Lemma 1 (Fornasini and Marchesini 1980) The 2-D system (1) is open-loop asymptotically
stable or (A1, A2) is an asymptotically stable pair, if and only if the following rank condition
holds.

rank(In − z1A1 − z2A2) � n, ∀(z1, z2) ∈ Ū 2

Lemma 2 (Bisiacco 1986) The 2-D system (1) is detectable or (A1, A2,C) is a detectable
triplet, if and only if the following rank condition holds.

rank

[
C

In − z1A1 − z2A2

]

� n, ∀(z1, z2) ∈ Ū 2

Lemma 3 (Bose 1982) Assuming F(z1, z2) is the Z transformation of f (i, j), then the 2-D
final-value theorem can be given as follows:

lim
z1→1,z2→1

{
(1 − z1)(1 − z2)

z1z2
F(z1, z2)

}

� lim
i→∞, j→∞ { f (i, j)} (7)

3 Observer designs

3.1 Asymptotically stable observer

Define the following matrices:

E �
[
In 0
0 0

]

, Ā1 �
[
A1 0
0 0

]

, Ā2 �
[
A2 0
0 0

]

, B̄1 �
[
B1

0

]

,

B̄2 �
[
B2

0

]

, C̄ � [
C Ip

]
, M̄1 �

[
M1

0

]

, M̄2 �
[
M2

0

]

(8)

One can obtain the following augmented 2-D singular system from system (1):
⎧
⎪⎪⎨

⎪⎪⎩

Ex̄(i + 1, j + 1) � Ā1 x̄(i, j + 1) + Ā2 x̄(i + 1, j) + B̄1u(i, j + 1) + B̄2u(i + 1, j)
+ M̄1 f (i, j + 1) + M̄2 f (i + 1, j)

y(i, j) � C̄ x̄(i, j)
f (i + 1, j + 1) � Ad1 f (i, j + 1) + Ad2 f (i + 1, j)

(9)
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and unknown boundary conditions satisfy:

sup ‖x̄(i, 0)‖ < ∞, i � 0, 1, . . . ; sup ‖x̄(0, j)‖ < ∞, j � 1, 2, . . .

sup ‖ f (i, 0)‖ < ∞, i � 0, 1, . . . ; sup ‖ f (0, j)‖ < ∞, j � 1, 2, . . . (10)

Theorem 1 For the 2-D singular system (9), with boundary conditions (10), if and only if :
{
rank(In − z1A1 − z2A2) � n

rank(Iq − z1Ad1 − z2Ad2) � q
∀(z1, z2) ∈ Ū 2 (11)

holds, then there exist the following observer matrices:

L , K1, K2 ∈ R(n+p)×p, Kd1, Kd2 ∈ Rq×p,

F1 � (E + LC̄)−1( Ā1 − K1C̄), F2 � (E + LC̄)−1( Ā2 − K2C̄),

H1 � (E + LC̄)−1 B̄1, H2 � (E + LC̄)−1 B̄2, T � (E + LC̄)−1L ,

R1 � (E + LC̄)−1M̄1, R2 � (E + LC̄)−1M̄2,

G1 � (E + LC̄)−1 Ā1(E + LC̄)−1L ,G2 � (E + LC̄)−1 Ā2(E + LC̄)−1L (12)

and boundary conditions

sup
∥
∥
∥ ˆ̄x(i, 0)

∥
∥
∥ < ∞, i � 0, 1, . . . ; sup

∥
∥
∥ ˆ̄x(0, j)

∥
∥
∥ < ∞, j � 1, 2, . . .

sup
∥
∥
∥ f̂ (i, 0)

∥
∥
∥ < ∞, i � 0, 1, . . . ; sup

∥
∥
∥ f̂ (0, j)

∥
∥
∥ < ∞, j � 1, 2, . . . (13)

which can lead to lim
i, j→∞(x̄(i, j) − ˆ̄x(i, j)) � 0 and lim

i, j→∞( f (i, j) − f̂ (i, j)) � 0.

Proof Partitioning L � [
LT
1 LT

2

]T
, where L1 ∈ Rn×p,L2 ∈ Rp×p , note that

rank(E + LC̄) � rank

([
In 0
0 0

]

+

[
L1

L2

]
[
C Ip

]
)

� rank

[
In + L1C L1

L2C L2

]

� rank

[
In L1

0 L2

]

� rank(L2) + n (14)

Hence, if and only if the square matrix L2 is of full rank, (E + LC̄) is nonsingular. Letting
L2 be nonsingular, the following relationship can be obtained:

C̄(E + LC̄)−1L � [
C Ip

]
[

In −L1(L2)−1

−C (Ip + CL1)(L2)−1

] [
L1

L2

]

� [
C Ip

]
[
0
Ip

]

� Ip (15)

Adding Ly(i + 1, j + 1) to both sides of the first equation in (9), it yields

(E + LC̄)x̄(i + 1, j + 1) � Ā1 x̄(i, j + 1) + Ā2 x̄(i + 1, j) + B̄1u(i, j + 1) + B̄2u(i + 1, j)

+ M̄1 f (i, j + 1) + M̄2 f (i + 1, j) + Ly(i + 1, j + 1)

� ( Ā1 − K1C̄)x̄(i, j + 1) + ( Ā2 − K2C̄)x̄(i + 1, j)

+ K1y(i, j + 1) + K2y(i + 1, j) + B̄1u(i, j + 1) + B̄2u(i + 1, j)

+ Ly(i + 1, j + 1) + M̄1 f (i, j + 1) + M̄2 f (i + 1, j) (16)
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Substituting z(i, j) � ̂̄x(i, j)− (E + LC̄)−1Ly(i, j) into the observer shown in (4) and using
Eq. (12), the observer in (4) becomes:

⎧
⎪⎨

⎪⎩

(E + LC̄) ˆ̄x(i + 1, j + 1) �( Ā1 − K1C̄) ˆ̄x(i, j + 1) + ( Ā2 − K2C̄) ˆ̄x(i + 1, j) + B̄1u(i, j + 1) + B̄2u(i + 1, j) + K1 y(i, j + 1)
+ K2 y(i + 1, j) + Ly(i + 1, j + 1) + M̄1 f̂ (i, j + 1) + M̄2 f̂ (i + 1, j)

f̂ (i + 1, j + 1) � Ad1 f̂ (i, j + 1) + Ad2 f̂ (i + 1, j) + Kd1C̄[x̄(i, j + 1) − ˆ̄x(i, j + 1)] + Kd2C̄[x̄(i + 1, j) − ˆ̄x(i + 1, j)]

(17)

�

According to the definitions of e(i, j) and ed (i, j), the error dynamic system can be presented
as:

⎧
⎪⎪⎨

⎪⎪⎩

(E + LC̄)e(i + 1, j + 1) �( Ā1 − K1C̄)e(i, j + 1) + ( Ā2 − K2C̄)e(i + 1, j)
+ M̄1ed (i, j + 1) + M̄2ed (i + 1, j)

ed (i + 1, j + 1) �Ad1ed (i, j + 1) + Ad2ed (i + 1, j)
− Kd1C̄e(i, j + 1) − Kd2C̄e(i + 1, j)

(18)

Rewrite (18) into a compact form:

[
E + LC̄ 0

0 Iq

]

︸ ︷︷ ︸

ẼL

[
e(i + 1, j + 1)
ed (i + 1, j + 1)

]

︸ ︷︷ ︸
ẽ(i+1, j+1)

�

⎛

⎜
⎜
⎜
⎜
⎝

[
Ā1 M̄1

0 Ad1

]

︸ ︷︷ ︸

Ã1

−
[
K1

Kd1

]

︸ ︷︷ ︸

K̃1

[
C̄ 0

]

︸ ︷︷ ︸

C̃

⎞

⎟
⎟
⎟
⎟
⎠

[
e(i, j + 1)
ed (i, j + 1)

]

︸ ︷︷ ︸
ẽ(i, j+1)

+

⎛

⎜
⎜
⎜
⎜
⎝

[
Ā2 M̄2

0 Ad2

]

︸ ︷︷ ︸

Ã2

−
[
K2

Kd2

]

︸ ︷︷ ︸

K̃2

[
C̄ 0

]

︸ ︷︷ ︸

C̃

⎞

⎟
⎟
⎟
⎟
⎠

[
e(i + 1, j)
ed (i + 1, j)

]

︸ ︷︷ ︸
ẽ(i+1, j)

(19)

Furthermore, it can be rewritten as:

ẽ(i + 1, j + 1) � (ẼL )
−1( Ã1 − K̃1C̃)ẽ(i, j + 1) + (ẼL )

−1( Ã2 − K̃2C̃)ẽ(i + 1, j) (20)

Referring to Lemma 1, if

rank(In+p+q − z1
˜̃A1 − z2

˜̃A2) � n + p + q. ∀(z1, z2) ∈ Ū 2 (21)

holds, where ˜̃A1 � (ẼL )−1( Ã1 − K̃1C̃), ˜̃A2 � (ẼL )−1( Ã2 − K̃2C̃), then the error dynamic
system (20) is asymptotically stable and lim

i, j→∞ ẽ(i, j) � 0. Since the left side of (21) is related

to both system and observer gainmatrices, further analysis of the existence condition is essen-
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tial. Partitioning K1 � [
KT
11 KT

12

]T
,K2 � [

KT
21 KT

22

]T
,Kd1 � [

KT
d11 KT

d12

]T
,Kd2 �

[
KT
d21 KT

d22

]T
, (21) becomes:

rank
[
In+p+q − (ẼL )

−1( Ã1 − K̃1C̃)z1 − (ẼL )
−1( Ã2 − K̃2C̃)z2

]

� rank
[
ẼL − ( Ã1 − K̃1C̃)z1 − ( Ã2 − K̃2C̃)z2

]

� rank

[
E + LC̄ − Ā1z1 − Ā2z2 + K1C̄z1 + K2C̄z2 −M̄1z1 − M̄2z2

Kd1C̄z1 + Kd2C̄z2 Iq − Ad1z1 − Ad2z2

]

�rank

⎡

⎣
In − A1z1 − A2z2 L1+K11z1+K21z2 −M1z1 − M2z2

0 L2 + K12z1 + K22z2 0
0 Kd1z1 + Kd2z2 Iq − Ad1z1 − Ad2z2

⎤

⎦

⎡

⎣
In 0 0
C Ip 0
0 0 Iq

⎤

⎦

� rank

⎡

⎣
In − A1z1 − A2z2 −M1z1 − M2z2 L1+K11z1+K21z2

0 Iq − Ad1z1 − Ad2z2 Kd1z1 + Kd2z2
0 0 L2 + K12z1 + K22z2

⎤

⎦ (22)

Hence, the necessary and sufficient conditions that the error dynamic system (20) is asymp-
totically stable can be given as follows:

rank

⎡

⎣
In − A1z1 − A2z2 −M1z1 − M2z2 L1+K11z1+K21z2

0 Iq − Ad1z1 − Ad2z2 Kd1z1 + Kd2z2
0 0 L2 + K12z1 + K22z2

⎤

⎦ � n + p + q (23)

Equation (23) is equivalent to:
{
rank(In − z1A1 − z2A2) � n

rank(Iq − z1Ad1 − z2Ad2) � q
∀(z1, z2) ∈ Ū 2

and

rank (L2 + K12z1 + K22z2) � p, ∀ (z1, z2) ∈ Ū 2 (24)

Evidently, (11) is a necessary condition for Eq. (23). From another perspective, if (11) holds,
L2,K12 and K22 exist such that (23) holds. For example, the simplest choice is that K12 �
K22 � 0 and L2 is nonsingular. Therefore, (11) is also a sufficient condition for (23).
Referring to Definition 2, it completes the proof of Theorem 1.

Remark 2 If we augment both system state and faults into one vector as[
x (i, j) fs (i, j) f (i, j)

]
, the 2-D descriptor system will become as follows:

⎡

⎣
In 0 0
0 0 0
0 0 Iq

⎤

⎦

⎡

⎣
x(i + 1, j + 1)
fs (i + 1, j + 1)
f (i + 1, j + 1)

⎤

⎦ �
⎡

⎣
A1 0 M1

0 0 0
0 0 Ad1

⎤

⎦

⎡

⎣
x(i, j + 1)
fs (i, j + 1)
f (i, j + 1)

⎤

⎦ +

⎡

⎣
A2 0 M2

0 0 0
0 0 Ad2

⎤

⎦

⎡

⎣
x(i + 1, j)
fs (i + 1, j)
f (i + 1, j)

⎤

⎦

+

⎡

⎣
B1

0
0

⎤

⎦ u(i, j + 1) +

⎡

⎣
B2

0
0

⎤

⎦ u(i + 1, j)

y(i, j) � [
C Ip 0

]

⎡

⎣
x(i, j)
fs (i, j)
f (i, j)

⎤

⎦

Notably
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(E + LC)1 �
⎡

⎣
In 0 0
0 0 0
0 0 Iq

⎤

⎦ +

⎡

⎣
L1

L2

L3

⎤

⎦
[
C Ip 0

] �
⎡

⎣
In + L1C L1 0
L2C L2 0
L3C L3 Iq

⎤

⎦

In Theorem 1,

(E + LC̄)2�
[
In 0
0 0

]

+

[
L1

L2

]
[
C Ip

]�
[
In + L1C L1

L2C L2

]

During the procedure of observer design, one needs to calculate (E + LC)−1 . In this case,
from mathematical perspective, (E + LC)−1

1 is more difficult to calculate than (E + LC)−1
2 .

Remark 3 For 1-D systems, like (Gao and Wang 2006), the necessary and sufficient con-
ditions for an asymptotically stable observer are commonly obtained by investigating the
detectability of the system. However, the detectability is only a necessary condition for a 2-D
asymptotically stable observer, as pointed out in (Bisiacco 1986) three decades ago. Hence,
analyzing the detectability of the 2-D system is no longer applicable, which is different from
the 1-D case.

If system (1) and (3) is not open-loop asymptotically stable, and rank condition (11) is not
satisfied, the asymptotically stable observer will not exist. To deal with this problem, another
kind of observer, the uniformly ultimately bounded observer, is proposed.

3.2 Uniformly ultimately bounded observer

Define the following matrices:

E �
[
In 0
0 0

]

, Ā1new �
[
A1 0
0 −IP

]

, Ā2new �
[
A2 0
0 −IP

]

, B̄1 �
[
B1

0

]

, B̄2 �
[
B2

0

]

,

N�
[

0
IP

]

, C̄ � [
C Ip

]
, M̄1 �

[
M1

0

]

, M̄2 �
[
M2

0

]

(25)

One can obtain the following augmented 2-D singular systems:
⎧
⎪⎪⎨

⎪⎪⎩

Ex̄(i + 1, j + 1) � Ā1new x̄(i, j + 1) + Ā2new x̄(i + 1, j) + B̄1u(i, j + 1) + B̄2u(i + 1, j)
+ M̄1 f (i, j + 1) + M̄2 f (i + 1, j) + N1 fs(i, j + 1) + N2 fs(i + 1, j)

y(i, j) � C̄ x̄(i, j)
f (i + 1, j + 1) � Ad1 f (i, j + 1) + Ad2 f (i + 1, j)

(26)

and unknown boundary conditions satisfy:

sup ‖x̄(i, 0)‖ < ∞, i � 0, 1, . . . ; sup ‖x̄(0, j)‖ < ∞, j � 1, 2, . . .

sup ‖ f (i, 0)‖ < ∞, i � 0, 1, . . . ; sup ‖ f (0, j)‖ < ∞, j � 1, 2, . . . (27)

we assume v � [ v1 v2 . . . vp ]T is the upper bound of fs .

Theorem 2 For system (26) with boundary conditions (27), if and only if :

rank

⎡

⎣
In − A1z1 − A2z2 L1+K11z1+K21z2 −M1z1 − M2z2

−C (z1 + z2) L2 + K12z1 + K22z2 + Ip (z1 + z2) 0
0 Kd1z1 + Kd2z2 Iq − Ad1z1 − Ad2z2

⎤

⎦

� n + p + q, ∀(z1, z2) ∈ Ū 2. (28)
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holds, then there exist the following observer matrices:

L , K1, K2 ∈ R(n+p)×p, Kd1, Kd2 ∈ Rq×p,

F1 � (E + LC̄)−1( Ā1new − K1C̄), F2 � (E + LC̄)−1( Ā2new − K2C̄),
H1 � (E + LC̄)−1 B̄1, H2 � (E + LC̄)−1 B̄2, T � (E + LC̄)−1L ,

R1 � (E + LC̄)−1M̄1, R2 � (E + LC̄)−1M̄2,

G1 � (E + LC̄)−1 Ā1(E + LC̄)−1L ,G2 � (E + LC̄)−1 Ā2(E + LC̄)−1L

(29)

and boundary conditions (13), which can lead to (4) is a uniformly ultimately bounded
observer for system (26). The uniformly ultimately bounded error is given as follows:

∥
∥
∥
∥
e(i + 1, j + 1)
ed (i + 1, j + 1)

∥
∥
∥
∥ ≤ ζ, ζ > 0, ∀i ≥ I,∀ j ≥ J (30)

Proof We divide the proof into two steps. �

Step 1
For Eq. (26), by adding Ly(i + 1, j + 1) to both sides, one can obtain:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(E + LC̄)x̄(i + 1, j + 1) � ( Ā1new − K1C̄)x̄(i, j + 1) + ( Ā2new − K2C̄)x̄(i + 1, j)

+ B̄1u(i, j + 1) + B̄2u(i + 1, j) + M̄1 f (i, j + 1)

+ M̄2 f (i + 1, j) + N fs (i, j + 1) + N fs (i + 1, j) + Ly(i + 1, j + 1)

+ K1y(i, j + 1) + K2y(i + 1, j)

f (i + 1, j + 1) � Ad1 f (i, j + 1) + Ad2 f (i + 1, j)
(31)

Substitute z(i, j) � ˆ̄x(i, j)− (E + LC̄)−1Ly(i, j) into (4) and use (12), the observer in (12)
becomes:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(E + LC̄) ˆ̄x(i + 1, j + 1) � ( Ā1new − K1C̄) ˆ̄x(i, j + 1) + ( Ā2new − K2C̄) ˆ̄x(i + 1, j)
+ B̄1u(i, j + 1) + B̄2u(i + 1, j) + K1y(i, j + 1)
+ K2y(i + 1, j) + Ly(i + 1, j + 1)
+ M̄1 f̂ (i, j + 1) + M̄2 f̂ (i + 1, j)

f̂ (i + 1, j + 1) � Ad1 f̂ (i, j + 1) + Ad2 f̂ (i + 1, j) + Kd1C̄[x̄(i, j + 1) − ˆ̄x(i, j + 1)]
+ Kd2C̄[x̄(i + 1, j) − ̂̄x(i + 1, j)]

(32)

Therefore, the error dynamic system can be obtained as follows:

⎧
⎨

⎩

(E + LC̄)e(i + 1, j + 1) � ( Ā1new − K1C̄)e(i, j + 1) + ( Ā2new − K2C̄)e(i + 1, j)
+ N fs(i, j + 1) + N fs(i + 1, j) + M̄1ed (i, j + 1) + M̄2ed (i + 1, j)

ed (i + 1, j + 1) � Ad1ed (i, j + 1) + Ad2ed (i + 1, j) − KdC̄[e(i, j + 1) + e(i + 1, j)]
(33)
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Error system (33) can be presented in a compact form as follows:

[
E + LC̄ 0

0 Iq

]

︸ ︷︷ ︸

ẼL

[
e(i + 1, j + 1)
ed (i + 1, j + 1)

]

︸ ︷︷ ︸
ẽ(i+1, j+1)

�

⎛

⎜
⎜
⎜
⎜
⎝

[
Ā1new M̄1

0 Ad1

]

︸ ︷︷ ︸

Ã1new

−
[
K1

Kd1

]

︸ ︷︷ ︸

K̃1

[
C̄ 0

]

︸ ︷︷ ︸

C̃

⎞

⎟
⎟
⎟
⎟
⎠

[
e(i, j + 1)
ed (i, j + 1)

]

+

⎛

⎜
⎜
⎜
⎜
⎝

[
Ā2new M̄2

0 Ad2

]

︸ ︷︷ ︸

Ã2new

−
[
K2

Kd2

]

︸ ︷︷ ︸

K̃2

[
C̄ 0

]

︸ ︷︷ ︸

C̃

⎞

⎟
⎟
⎟
⎟
⎠

[
e(i + 1, j)
ed (i + 1, j)

]

+

[
N
0

]

︸ ︷︷ ︸

Ñ

fs(i, j + 1) +

[
N
0

]

︸ ︷︷ ︸

Ñ

fs(i + 1, j) (34)

Furthermore, (34) can be rewritten as:

ẽ(i + 1, j + 1) �(ẼL )
−1( Ã1new − K̃1C̃)ẽ(i, j + 1)

+ (ẼL )
−1( Ã2new − K̃2C̃)ẽ(i + 1, j)

+ (ẼL )
−1 Ñ fs(i, j + 1) + (ẼL )

−1 Ñ fs(i + 1, j)

� Ãe1nẽ(i, j + 1)+ Ãe2nẽ(i + 1, j)

+ F̃e1 fs(i, j + 1) + F̃e2 fs(i + 1, j) (35)

To obtain the uniformly ultimately bounded estimation of system (26), the open-loop
error system (35) should be asymptotically stable. Referring to Lemma 1, if and only if the
following rank condition holds:

rank(In+p+q − z1 Ãe1n − z2 Ãe2n) � n + p + q. ∀(z1, z2) ∈ Ū 2 (36)

It becomes:

rank
[
In+p+q − (ẼL )

−1( Ã1new − K̃1C̃)z1 − (ẼL )
−1( Ã2new − K̃2C̃)z2

]

� rank

⎡

⎣
In − A1z1 − A2z2 L1+K11z1+K21z2 −M1z1 − M2z2

−C (z1 + z2) L2 + K12z1 + K22z2 + Ip (z1 + z2) 0
0 Kd1z1 + Kd2z2 Iq − Ad1z1 − Ad2z2

⎤

⎦

(37)

Thus, the necessary and sufficient conditions for the asymptotical stability of (35) can be
given as follows:

rank

⎡

⎣
In − A1z1 − A2z2 L1+K11z1+K21z2 −M1z1 − M2z2

−C (z1 + z2) L2 + K12z1 + K22z2 + Ip (z1 + z2) 0
0 Kd1z1 + Kd2z2 Iq − Ad1z1 − Ad2z2

⎤

⎦

� n + p + q

Step 2
Given that (35) is open-loop asymptotically stable, the effect of the bounded boundary

conditions of the error dynamic system will become zero when i → ∞ and j → ∞. In
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this case, only the effects of the measurement fault on the estimation error should be further
analyzed to obtain the final value of the error vector.

According to Bose (1982) and referring to Definition 1, the transfer function from fs to ẽ
is:

Ee(z1, z2) � [In+p+q − z1 Ãe1n − z2 Ãe2n]
−1[z1 F̃e1 + z2 F̃e2]Fs(z1, z2) (38)

In this case, Ee(z1, z2) and Fs(z1, z2) are the Z transformation of ẽ(i, j) and fs(i, j), respec-
tively. Using the 2-D Z transformation formula (6) and the 2-D final-value theorem (7), the
final value of the estimation error is calculated as follows:

lim
i→∞, j→∞ |ẽ(i, j)| � lim

z1→1,z2→1

∣
∣
∣
∣
(1 − z1)(1 − z2)

z1z2
Ee(z1, z2)

∣
∣
∣
∣

� lim
z1→1,z2→1

∣
∣
∣
∣
(1 − z1)(1 − z2)

z1z2
[In+p+q − z1 Ãe1n − z2 Ãe2n]

−1[z1 F̃e1 + z2 F̃e2]Fs (z1, z2)

∣
∣
∣
∣

≤
∣
∣
∣[In+p+q − Ãe1n − Ãe2n]

−1[F̃e1 + F̃e2]
∣
∣
∣ v

� [
ξ1 ξ2 . . . ξn+p+q

]T (39)

By defining ζ
/
2 � κ �

∥
∥
∥
[
ξ1 ξ2 . . . ξn+p+q

]T
∥
∥
∥, I and J exist such that ‖ẽ(i, j)‖ ≤

2κ � ζ , ∀i ≥ I,∀ j ≥ J. If fs(i, j) is bounded, the gains K1, K2,Kd1,Kd2 and L can be
found to make the observer in Theorem 2 an uniform ultimately bounded observer with the
bound value ζ . Referring to Definition 3, the proof of Theorem 2 is completed.

Remark 4 Notice that

[F̃e1 + F̃e2] � 2

⎡

⎣
In −L1(L2)−1 0

−C (Ip + CL1)(L2)−1 0
0 0 Iq

⎤

⎦

⎡

⎣
0
IP
0

⎤

⎦ � 2

⎡

⎣
−L1(L2)−1

(Ip + CL1)(L2)−1

0

⎤

⎦ (40)

In this case, if L−1
2 → 0, [F̃e1 + F̃e2] → 0, then ζ → 0. Thus, the final error upper

bound of the observer in Theorem 2 can be designed to be arbitrarily small by appropriately
choosing L .

Remark 5 For the designed observers, one needs to choose appropriate L , K̃1 and K̃2 to
satisfy (21) and (36). According to Theorem 4 in Xu et al. (2012) and Theorem 1 in Hinamoto
(1993), after choosing L , the design of K̃1 and K̃2 can be formulated into a LMI problem, and
the LMI problem can be conveniently solved by using software tools such as the MATLAB
LMI tool box.

The rank condition (28) is not only related to the observer gains, but also related to the
system matrices; it is not easy to check (28) before the observer design. Therefore, only the
rank condition related to the system matrices is required.

Theorem 3 For the system (26) with boundary conditions given by (27), (41) is a necessary
condition for the existence of uniform ultimately bounded observer.
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

rank

[
In − A1z1 − A2z2

C

]

� n, rank
(
Iq − Ad1z1 − Ad2z2

) � q.

when (z1 + z2) 
� 0
rank [In − A1z1 − A2z2] � n, rank

(
Iq − Ad1z1 − Ad2z2

) � q.

when (z1 + z2) � 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, ∀(z1, z2) ∈ Ū 2

(41)
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Proof To eliminate the effects of the observer matrices, one needs to perform simple matrix
decomposition for (36), which can be obtained as:

rank(In+p+q − z1 Ãe1n − z2 Ãe2n)

� rank

⎧
⎨

⎩

[
In+p+q (ẼL )−1K1z1 (ẼL )−1K2z2

]

⎡

⎣
In+p+q − (ẼL )−1 Ã1 − (ẼL )−1 Ã2

C̃
C̃

⎤

⎦

⎫
⎬

⎭

(42)

The necessary condition of rank(In+p+q − z1 Ãe1n − z2 Ãe2n) � n + p + q is

rank

⎡

⎣
In+p+q − (ẼL )−1 Ã1 − (ẼL )−1 Ã2

C̃
C̃

⎤

⎦ � n + p + q

Considering that

rank

⎡

⎣
In+p+q − (ẼL )−1 Ã1 − (ẼL )−1 Ã2

C̃
C̃

⎤

⎦

� rank

[
In+p+q − (ẼL )−1 Ã1 − (ẼL )−1 Ã2

C̃

]

Therefore, the necessary condition of rank(In+p+q − z1 Ãe1n − z2 Ãe2n) � n + p + q equals

rank

[
In+p+q − (ẼL )−1 Ã1 − (ẼL )−1 Ã2

C̃

]

� n + p + q (43)

One can obtain that

rank

[
In+p+q − (ẼL )

−1 Ã1 − (ẼL )
−1 Ã2

C̃

]

� rank

[
(ẼL )

−1 0
0 Ip

] [
ẼL − Ã1z1 − Ã2z2

C̃

]

� rank

[
ẼL − Ã1z1 − Ã2z2

C̃

]

� rank

⎡

⎢
⎢
⎣

In − A1z1 − A2z2 0 −M1z1 − M2z2
0 Ip(z1 + z2) 0
0 0 Iq − Ad1z1 − Ad2z2
C Ip 0

⎤

⎥
⎥
⎦

�

⎧
⎪⎨

⎪⎩

rank

[
In − A1z1 − A2z2

C

]

+ p + rank
(
Iq − Ad1z1 − Ad2z2

)
, when (z1 + z2) 
� 0

rank [In − A1z1 − A2z2] + p + rank
(
Iq − Ad1z1 − Ad2z2

)
, when (z1 + z2) � 0

⎫
⎪⎬

⎪⎭

(44)

holds, so (41) is a necessary condition for (36). The proof of the final bounded estimation
error is the same as that of Theorem 2. Therefore, the proof of Theorem 3 is completed. �

Remark 6 Summarizing the relationship of three theorems, if the systems satisfy the rank
conditions given in Theorems 1 and 2, there will exist observers that can simultaneously
estimate the states and faults, and constructive design methods are proposed. If the systems
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do not satisfy these rank conditions, then there is no observer that can estimate the states
and faults. However, in Theorem 2, the rank conditions are not only related to the system
matrices, but also related to the observer gains, so the rank conditions are difficult to assess
before the observer design. In Theorem 3, only the rank conditions that are related to the
system matrices are proposed.

Remark 7 This study indicates that the uniformly ultimately bounded observers for 2-D
systems with multiple faults have dramatically different existence conditions, compared with
their 1-D counterparts. For the uniformly ultimately bounded observer, the results for 2-D
systems presented in Theorems 2 and 3 are more complex than those for 1-D systems.
Furthermore, the upper bound of the uniformly ultimately bounded observer is presented and
analyzed, which is much more complicated than the 1-D case.

4 Simulation examples

In this section, two examples are provided to demonstrate the feasibility and effectiveness of
the proposed observer design methods in the previous theorems.

4.1 Example 1

Consider the thermal process described by the following partial differential equation (Kac-
zorek 1985)

Tx (x, t) � −Tt (x, t) − T (x, t) + bu(x, t)

T (0, t) � l1(t), T (x, 0) � l2(x), x ∈ [0, xL ], t ∈ [0,∞] (45)

where T (x, t) is the temperature at space point x and time point t , u(x, t) is the given force
function, T (0, t) and T (x, 0) are the boundary and initial conditions, respectively, l1(t) and
l2(x) are known functions. Equation (45) is usually used to describe the thermal process such
as heat exchangers, chemical reactors, and pipe furnaces (Kaczorek 1985). Discretize (45)
and define

T (i, j) � T (i�x, j�t)

Tx (x, t) � T (i, j) − T (i − 1, j)

�x

Tt (x, t) � T (i, j + 1) − T (i, j)

�t

xT (i, j) � [
T T (i − 1, j) T T (i, j)

]T
(46)

where�x and�t are the space step and time step, respectively. Let�t � 0.1,�x � 0.4,b �
0. By substituting (46) into (45), we can easily yield a 2-D FM-II state space model with

A1 �
[
0 1
0 0

]

, A2 �
[

0 0
�t
�x 1 − �t

�x − �t

]

M1 �
[
1
0

]

, M2 �
[
0
1

]

, C � [
1 1

]
, L � [

0 0 100
]T

(47)

and the dynamics of the faults can be assumed as follows:

f (i, j) � Ad1 f (i − 1, j) + Ad2 f (i, j − 1) , Ad1 � 0.5, Ad2�0.4

fs(i, j) � 20 sin(i + j) (48)
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Fig. 1 States and faults estimation errors of the 2-D system presented in (47) are shown in subplots (a), (b),
(c), and (d), respectively

The boundary conditions of the observer in this example are assumed to be zero, so the
boundary conditions of the error dynamic systemequal the boundary conditions of the original
2-D system. The boundary conditions are similar to those in example 2. In the rectangular
region, the boundary conditions of the error are:

e1(0, j) � sin(2π j/ l), e1(i, 0) � sin(π j/ l),

e2(0, j) � sin(2π j/ l), e2(i, 0) � sin(2π j/ l),

e3(0, j) � sin(2π j/ l), e3(i, 0) � sin(π j/ l),

e4(0, j) � sin(2π j/ l), e4(i, 0) � sin(2π j/ l), 0 ≤ i, j ≤ l � 40 (49)

One can find that

rank [I2 − z1A1 − z2A2] � 2, ∀ (z1, z2) ∈ Ū 2

rank [I1 − z1Ad1 − z2Ad2] � 1, ∀ (z1, z2) ∈ Ū 2
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Fig. 2 States and faults estimation errors of the 2-D system presented in (51) are shown in (a), (b), (c), and
(d), respectively

holds. Referring to Theorem 1, an asymptotically stable observer exists for (47). According to
Theorem 4 in Xu et al. (2012) and Theorem 1 in Hinamoto (1993), one obtains the following
matrices:

K̃1 �

⎡

⎢
⎢
⎣

0.8
−0.4
−0.7
0.5

⎤

⎥
⎥
⎦ , K̃2 �

⎡

⎢
⎢
⎣

0.45
−0.35
−0.3
0.1

⎤

⎥
⎥
⎦ (50)
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4.2 Example 2

Consider the 2-D FM-II system, where the system coefficient matrices are given as follows:

A1 �
[−0.8 0.1

0.5 0

]

, A2 �
[−0.8 0

1 0.1

]

, B1 �
[
1
0

]

, B2 �
[
0
1

]

,

M1 �
[
2
0

]

, M2 �
[
0
1

]

, C � [
0 1

]
, L � [

0 0 −10
]T

(51)

The dynamics of the faults are the same as example 1.
As

rank [I2 − A1z1 − A2z2] � 1 < 2,

(

z1 � −5

8
, z2 � −5

8

)

holds, referring to Theorem 1, no asymptotically stable observer exists for (51). However,

rank

[
I2 − A1z1 − A2z2

C

]

� 2, when (z1 + z2) 
� 0

rank [I2 − A1z1 − A2z2] � 2, when (z1 + z2) � 0

rank [I1 − z1Ad1 − z2Ad2] � 1, ∀ (z1, z2) ∈ Ū 2

holds, which means the necessary condition for the existence of a uniformly ultimately
bounded observer is satisfied. Similar to Example 1, one obtains the following matrices:

K̃1 �

⎡

⎢
⎢
⎣

5600
−3100
−19
−8

⎤

⎥
⎥
⎦ , K̃2 �

⎡

⎢
⎢
⎣

−270000
91600
340
−0.03

⎤

⎥
⎥
⎦ (52)

Fig. 3 Left subplot shows the fault estimation error in the measurement equation in Theorem 1 and right
subplot shows the zoomed-in error
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Fig. 4 Left subplot shows the fault estimation error in the measurement equation in Theorem 2 and right
subplot shows the zoomed-in error

According to (19) and (34), the estimation error e(i, j)(0 ≤ i, j ≤ 40) is shown in
Figs. 1, 2. Both e1(i, j) and e2(i. j) represent the system states, whereas e3(i, j) and e4 (i, j)
represent the fault in the measurement equation fs (i, j) and fault in the states updating
equation f (i, j), respectively.

Figure 1 shows that the estimation error of both system states and two kinds of faults
converge to zero rapidly. Figure 2 illustrates that the estimation error of both system states
and faults converge to a small value.

To show the convergence properties of both the asymptotically stable and uniformly ulti-
mately bounded observers clearly, we zoom in Figs. 1c and 2c to obtain magnified images of
Figs. 3, 4. The fault estimation error in Fig. 1c is asymptotically stable and the fault estimation
error in Fig. 2c is uniformly ultimately bound.

5 Conclusions

The existence and design of singular system observers for 2-D linear systems with multiple
channel faults are investigated in this study. For different system conditions, necessary and
sufficient conditions for the existence of observers are obtained. The effectiveness of the
proposed methods is validated by two simulation examples. The estimation results can be
used for active fault tolerant control. In the future, the estimation of 2-D nonlinear time-
varying systems with multiple channel faults will be discussed.
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