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Introduction




Preliminary Knowledge: Learning Causality with data

Learning causality with data

Traditional intervention experiments
Constraint based method : PC
Score based method : Greedy Equivalence Search
causal discovery(learning causal relations)
Functional causal model method : LINGAM

- Causal discovery: inferring causal graphs from Hybrid method
data

front door criterion

back door criterion ]

Causal inference(learning causal effects)
sample balancing

« Causal inference: identification and estimation of
causal effects

+ causal effects: the strength of a causal relation pomain adaptation(transfer learning)

Connection to machine learning Reinforcement learning

Semi-supervised learning/supervised learning



At the Very Beginning: Simpson’s Paradox

Consider a study that measures weekly exercise and cholesterol in
various age groups.

@ [here is a general trend downward in each group: the more
young people exercise, the lower their cholesterol is, and the
same applies for middle-aged people and the elderly.

N " O,
Cholesterol Cholesterol % X

- - X Exercise
Exercise



At the Very Beginning : Simpson’s Paradox

Fact: Age as Confounding Factor

@ Older people are more likely to exercise.

@ Older people are also more likely to have high cholesterol
regardless of exercise.

Cholesterol Cholesterol 289

Exercise Exercise

Cholesterol



Introduction

A practical causal definition

« Xis acause of Y if and only if:
1. Change X leads to achangeinY
2. Keep everything else constant

Confounder

Cholesterol

A manipulation/intervention directly
changes only the target variable X.

Iy, # x, P(Y]do (X=x,)) # P(Y|do (X=x,))

Correlation/dependence/association

« X and Y are correlated/associated if and only if:

1. X changes, Y also changes

Ix, # x, P(Y|X=x,) # P(Y|X=x,)



Introduction

_ . A manipulation/intervention directly
A practical definition changes only the target variable X.

« Xis acause of Y if and only if: : .
dx P(Y|do (X= P(Y|do (X=x,
1. Change X leads to a change in Y 1 # % P(Y|do (X=x,)) # P(Y]do (X=x,))

2. Keep everything else constant

ation/dependence/association

Confounder

« X and Y are correlated/associated if and only if:

1. X changes, Y also changes

Cholesterol
Elx] #xz l"lfY|X—.T| ) # P{Y|X—.r3]



Introduction

* Machine learning systems often assume training and
test set have the same distribution .

\ Test Distribution

Training Distribution
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Introduction

machine learning is not stable

Yes

Maybe

No
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Introduction

machine learning is not explainable

Question: the causal effect of education attainment on earnings

Dataset: education, earnings, |1Q, spent on artwork

o}
N <- 100000

“ #generate data

IQ <- rnorm(N)

edu <- .5 * IQ + rnorm(N)

earnings <- .3 * IQ + .4 * edu + rnorm(N)
art <- 1.2 * edu + .6 * earnings + rnorm(N)

From which can we get an unbiased estimation?

B

summary(1lm(Cearnings ~ edu))

summary(Llm(Cearnings ~ edu + IQ))

summary(lmCearnings ~ edu + IQ + art))

LN
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Introduction

machine learning is not explainable

Call: Call:
Im(formula = earnings ~ edu) Im(formula = earnings ~ edu + IQ)
Residuals: Residuals:

Min 1Q Median 3Q Max Min 1Q Median 3Q Max
-4.2825 -0.6950 -0.0023 @.6929 4.4687 -4.2078 -0.6729 -0.0015 0.6727 3.9517
Coefficients: " Coefficients:

Estimate Std. Error t value Pr(=Itl)

(Intercept) -3.344e-05 3.274e-03 -0.01  0.992 Estimate Std. Error t value Pr(>It!)

I odu S 181e-01 I2.925e—03 17712 <De-1p **= (Intercept) -0.001230 ©0.003162 -0.389 @.697
— [edu @.398195 ] 0.003158 126.088 <2e-16 ***
Signif. codes: @ “***' @.001 ‘**’ 0.01 “*’ 0.05 *.” 0.1  * 1 IQ 0.299418 0.003525 84.952 <2e-16 ***
Residual standard error: 1.035 on 99998 degrees of freedom Signif. codes: @ “¥**’ @.001 ‘**’ 9.01 ‘*’ @.05 *.” 0.1 " 1

Multiple R-squared: ©.2388, Adjusted R-squared: ©0.2388

F-statistic: 3.137e+@4 on 1 and 99998 DF, p-value: < 2.2e-16 Residual standard error: ©.9999 on 99997 degrees of freedom
Multiple R-squared: .29, Adjusted R-squared: 0.29
F-statistic: 2.043e+@4 on 2 and 99997 DF, p-value: < 2.2e-16

Call:

Im(formula = earnings ~ edu + IQ + art)

Residuals: .

Min 10 Median 3Q Max {r}
-3.6666 -0.5782 0.0003 0.5773 3.7976 N <- 100000
Coefficients: _ #generate data

Estimate Std. Error t value Pr(>1tl)

(Intercept) -0.001869 0.002708 -0.69  0.49 1Q <~ rnorm(N)
[edu -0.237545| ©0.004293 -55.33  <Ze-16 *** edu <- .5 * IQ + rnor
1] U.Z18788 0.003048 71.79 <2e-16 *¥* earnings <- .3 * IQ +| .4 * edu |+ rnorm(N)
art @.443131 2.002324 190.68 <Ze-16 *** art =- 1.2 * edu + .6 earnings + r'nor'm(N)

Signif. codes: @ “***’ @.001 ‘**’ @.01 ‘*’ 9.65 ‘.’ @.1 * ' 1

Residual standard error: @.8563 on 99996 degrees of freedom
Multiple R-squared: 0.4793, Adjusted R-squared: 0.4793
F-statistic: 3.069e+@4 on 3 and 99996 DF, p-value: < 2.2e-16
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machine learning is not explainable

Yes

Maybe

No
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Introduction

The benefits of bringing causality into machine learning

Grass—Label: Strong correlation
Weak causation
Dog nose—Label: Strong correlation
Strong causation

T: grass
X: dog nose
Y: label

More explainable and more stable



Introduction

Prediction
Performance

True Model
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Bin Yu (2016), Three Principles of Data Science: predictability, computability, stability

Stable Learning
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Introduction

Stable Learning: Definition
Testing

Distribution 1 Accuracy 1 — L.I.D. Learning

Training

Distribution 2 Accuracy 2

Distribution 1
Distribution 3 Accuracy 3

____________________________

_ VAR (Acc) Stable

Learning

i Distribution n Accuracy n - Transfer Learning

Stable Learning: Achieve uniformly good performance on

distribution

17



Sample Reweighting: Bridge from
Causality to ML
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Sample Reweighting: Bridge from Causality to ML

Causal Problem
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Typical Causal Framework

Learning Problem

Yy = xTBI:p T BO

Typical Regression Framework
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Sample Reweighting: Bridge from Causality to ML

Causal Problem

Typical Causal Framework

Learning Problem

Typical Regression Framework
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Sample Reweighting: Bridge from Causality to ML

Causal Problem Learning Problem

—————————

—————————

Typical Causal Framework Typical Regression Framework

After confounder balancing, partial effect can be regarded as causal effect.

Predicting with causal variables is stable across different environments.

21



Sample Reweighting: Bridge from Causality to ML

Directly Confounder Balancing

Given a feature T
Assign different weights to samples so that
the samples with T and the samples without
T have similar distributions in X

Calculate the difference of Y distribution in
treated and controlled groups. (correlation
between T and Y)

Over-parametrization and infeasible in

high-dimensional setting!

Global Balancing

Given ANY feature T
Assign different weights to samples so that the
samples with T and the samples without T have
similar distributions in X

Calculate the difference of Y distribution in
treated and controlled groups. (correlation
between T and Y)

Removing confounding bias with an
unique set of global weights.
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Sample Reweighting: Bridge from Causality to

ML

Theoretical Guarantee

PROPOSITION 3.3. If0 < P(X; = x) < 1 forallx, where P(X; = x) =
L 3:iI(Xi = x), there exists a solution W* satisfies equation (4) equals
0 and variables in X are independent after balancing by W™,

XT_.(WeX.,;) XT_-(Wo(1-X, )|

wT.X,;  WI(-X)

\Z
0

5 ()

2

Kun Kuang, Peng Cui, Susan Athey, Ruoxuan Li, Bo Li. Stable Prediction across Unknown Environments. KDD, 2018.

Proor. Since ||-)| 2 0, Eq. (8) can be simplified to V), Vk = j

im IJ‘"”‘, -+ Wi L exg .‘h‘i:"'
e Xy et Wi T AL :

with probability 1. For W*, from Lemmma 31,0 < P(X, = x) < 1,
Ve Vit =1lorh

nl{l.ll-%..l\. lh.; - "llill.%:_l £ o0 X, :h".
X "IT“‘_‘_I”IVli_I\. vm

- "leu'._‘_x v -t P(Xi = x) 'I’NJ.T;"'l

with probability 1 (Law of Large Number). Since {eatures are binary,

i y .
dim 53k X W =

1 . _ 1 14 - W _ ap-2
J%‘L?_‘:\_‘ oW, = »-1, Jl{!_lr?._:,\., LX, oW, =2aF

and therefore, we have following equation with probabslity 1
fLAWeX X7 W a-X 0| w l a2

- | = g = S m ()
WX wei-X | - 2r

X
lim |
R

o
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Sample Reweighting: Bridge from Causality to ML

Causally Regularized Logistic Regression (CRLR)

------------------------------------------------

---------------------------------------------

XT (Wol)) (WO(I—IJ))

p
Z] l” WTI =4 wT(1_1) ”2 o
; W20, W5 <2z [BlZ <2, IIﬂIh < A4,
Sample (Zk Wi — 1)% < s,
reweighted Causal
logistic loss Contribution

Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. Causally Regularized Learning on Data with Agnostic Bias. ACM MM, 2018.
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Sample Reweighting: Bridge from Causality to ML

25



Stable Learning: From Statistical Learning

Perspective
mr 1




Stable Learning: From Statistical Learning Perspective

Sample reweighting

y = ggTﬁLp + By t+b(x) He, \
/ Noise term

Linear part Bias cannot be modeled by linear part

Assumption

1) the linear part of generation model is stable and invariant to unknown
distribution shift

2) the misspecification bias could be unstable and bounded |b(z)| < &

Un-stability
1) Bias term Estimate parameters as accurately as possible and make
2) Input variables without causality the error uniformly small for all x

27



Stable Learning: From Statistical Learning Perspective

Sample reweighting

n
. o~ . 2
Least squares regression ﬁ = arg mén E (:B;rﬁl:p + 50 — yz)

=1

Solutions without collinearity: (X'X)'X'Yy

However, the estimation error caused by misspecification term can

be as bad as |5 — B2 < 2(8/y) + 0, where~? is the smallest eigenvalue of E(x — Ex)(z —Ex) .

A small y implies high collinearity, which means high collinearity leads to poor solution

|

Reducing collinearity by sample reweighting

28



Stable Learning: From Statistical Learning Perspective

Toy example

- Assume the design matrix X consists of two variables X, X5,
generated from a multivariate normal distribution:

1
X ~ N0, ). z=( ”)
p 1

- By changing p, we can simulate different extent of collinearity.

- To induce bias related to collinearity, we generate bias term b(X)
with b(X) = Xv, where v is the eigenvector of centered covariance

matrix corresponding to its smallest eigenvalue 2.
- The bias term is sensitive to collinearity.

29



Stable Learning: From Statistical Learning Perspective

Toy example

/ large variance in dif ferent distributions
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Stable Learning: From Statistical Learning Perspective

Idea: Learn a new set of sample weights w(x) to decorrelate the
input variables and increase the smallest eigenvalue

For regression:
3 = arg min [’A[’i' . }3 — Xz 2.
ﬁWLS g 3 ; 1 ( ,ﬁ)

For classification:

n

Z w (z;) In (1 + exp (—Bngzyz)) :

=1
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Stable Learning: From Statistical Learning Perspective

Sample reweighting

Algorithm 1 Sample Reweighted Decorrelation Operator
(SRDO)

Require: Design Matrix X
I: fori=1...ndo
2:  Initialize a new sample z; € R? with empty vector
3: foryj=1...pdo
4: Draw the j'"* feature of new sample z; ; from X ; | —»

By treating the different columns independently
while performing random resampling, we can
obtain a column-decorrelated design matrix with

at random _
5. end for the same marginal as before.
6: end for
/51311 12 - Tlp \ (.’L'jl R 79 = \
21 T2 ... IT2p = Lj1 .. Ts ...
X = | Decorrelation > o=
\xnl Tn2 <+ Tnp ) \wkl vee T e )

where i,j,k,r,s,t are drawn from 1 ...n at random
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Stable Learning: From Statistical Learning Perspective

Samp

le reweighting

Algorithm 1 Sample Reweighted Decorrelation Operator
(SRDO)

Require: Design Matrix X

AN

|

2:
3:
4-

cfori=1...ndo
Initialize a new sample z; € R? with empty vector
for;=1...pdo

Draw the j'" feature of new sample 7; ; from X
at random

end for
end for

Set z; as positive samples and z; as negative samples,

then train a binary classifier.
Set w(z) = igzém for each sample x; in X, where
p(Z = 1|x) is the probability of sample x been drawn

from D estimated by the trained classifier.

Ensure: A set of sample weights w(z) which can deccore-

late X

By treating the different columns independently
while performing random resampling, we can
obtain a column-decorrelated design matrix with
the same marginal as before.

get sample weight by using density ratio estimation
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Stable Learning: From Statistical Learning Perspective

- Simulation Study

24 F

22

4 Error
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(a) Estimation error
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Correlation on training data

(b) Prediction error over different test(c) Average prediction error&stability
environments
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l 05 Conclusion




Conclusion

1. Stable Learning cares about not only the prediction accuracy but also the prediction stability
across different distributions.

2. Causality provide firm soil for the understanding intrinsic mechanism of stable learning.
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Thanks!

Q&A?




Sample Reweighting: Bridge from Causality to ML

Causal Regularizer for Continuous Variable

L n . - 2
min y_"_, ||[E[XT 2w X _;] - E[X” W]E[X,I—jVV]HQ

W
Decorrelated Weighted Regression:
min 37, Wi - (V; - X;.9)°
) - o, - L 2
st S0 | XEBwX j/n = XEW/n - X Wn|[; < A
|3|| < A %Zf_] HE < Aj.

1 1 ' , ) |
— E V, — 1 1. W =10,
(_”. : IU, ‘J < A, W 0

Kuang, K., Xiong, R., Cui. Stable Prediction with Model Misspecification and Agnostic Distribution Shift. A44/, 2020

https://github.com/KunKuang/Decorrelated-Weighted Regression
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